
IUPAC International Chemical Identifier (InChI)

InChI version 1, software version 1.03 (2010)

Release Notes

Last revision date: June 15, 2010

This document is a part of the release of the IUPAC International Chemical Identifier with

InChIKey, version 1, software version 1.03 (http://www.iupac.org/inchi).

InChI software v. 1.03 has merged functionality: it allows one to produce both standard and non-

standard InChI identifiers, as well as their hashed representation (InChIKey).

CONTENTS

InChI generation ...2

Standard vs. non-standard InChI generation...2

Different markup for unknown and undefined stereo; new option “SLUUD”.............................2

Advanced tautomerism options (experimental) ..3

Structure perception and InChI creation options ..3

Saving InChI creation options; new option “SaveOpt” ..5

InChIKey and hashing ..7

(No) bugfix for InChIKey encoding ...7

Extended InChI hash ...10

InChI2InChI conversion and SaveOpt letters ...10

Distribution package ...11

Binaries ...11

InChI API/Library...12

License and related..12

CML support/source code...13

Testing...13

InChI generation/testing..13

Bugfixes impact ..15

This document summarizes and briefly explains the new features of InChI software v. 1.03 (2010).

 2

The current version of the Identifier is 1; the current version of the InChI software is 1.03 (June

2010). Previously released versions 1.01 (2006), 1.02-beta (2007), and 1.02-standard (2009), as well

as all earlier versions, are now considered obsolete.

InChI generation

Standard vs. non-standard InChI generation

InChI software v. 1.03 (2010) has merged functionality: it allows one to produce both standard and

non-standard InChI identifiers, as well as their hashed representation (InChIKey).

Standard InChI is marked with the prefix “InChI=1S/”.

The prefix for non-standard InChI is simply “InChI=1/”.

By default, InChI programs generate standard InChI/standard InChIKey. In particular, standard

identifiers are generated when the software is used without any command-line options.

If some command-line options are specified, and at least one of them qualifies as related to non-

standard InChI (see below), the executable produces non-standard InChI/InChIKey.

The same is true for general-purpose InChI API calls. For example, an API function GetINCHI()

produces standard InChI by default and a non-standard one if some “InChI creation option” is

specified in input parameters.

However, for compatibility with the previous v. 1.02-standard (2009) release, API calls which deal

only with standard InChI – for example, GetStdINCHI() - are retained (technically, they provide

pre-customized interface to general-purpose API functions).

Different markup for unknown and undefined stereo; new option “SLUUD”

In InChI software versions prior to 1.02-standard (2009), the two different signs were used to mark

“unknown” and “undefined” stereo, ‘u’ and ‘?’, resp. (Briefly: “undefined” means not given one

while “unknown” means explicitly marked as unknown, e.g., with “wavy” bonds). In standard InChI

software v. 1.02, the both signs were merged to ‘?’ (that is, “unknown” stereo treated as

“undefined”).

 3

In InChI software version 1.03 (2010), the same ‘?’ sign for “unknown/undefined” is always used in

standard InChI. It is also used in non-standard InChI, by default. However, it is possible to return to

old policy of different ‘u’ and ‘?’ signs.

For this purpose, the new option “/SLUUD” (“-SLUUD” under Linux) is introduced (SLUUD

stands for ‘Stereo labels for “unknown” and “undefined” are different’).

Advanced tautomerism options (experimental)

The two options “KET” and “15T” provide, as an experiment, an access to advanced tautomerism

detection. Option “/KET” (“-KET” under Linux) makes InChI account for keto-enol tautomerism;

“/15T” (“-15T” under Linux) - for 1,5-tautomerism.

Note that the both kinds of advanced tautomerism detection are, actually, an extension to InChI

Identifier v. 1. Their activation may affect very significant amount of InChI strings. Also, these

features are not yet tested completely. Therefore, the both options are provided only for

experimentation purposes and are strongly not recommended in routinely usage.

Structure perception and InChI creation options

Options affecting generation of InChI are divided on “structure perception” options and “InChI

creation” options.

The perception options are considered drawing style/edit flags which affect the input structure

interpretation and are not memorized. It is assumed that user may deliberately use these options to

account for the specific features of structure collections. Whence, perception options may be used

while generating standard InChI without a loss of its “standardness”.

Perception options are listed in the following table.

 4

Table 1. Structure perception options.

Structure perception option Meaning Default behavior (standard;

if no option supplied)

NEWPSOFF Both ends of wedge point to

stereocenters

Only a narrow end of wedge

points to stereocenter

DoNotAddH All hydrogens in input structure

are explicit

Add H according to usual

valences

SNon Ignore stereo Use absolute stereo

There are several options (Table 2) which modify the interpretation of input stereochemical data. In

principle, they also may be considered “structure perception” options. However, as the standard

InChI, by definition, requires the use of absolute stereo (or no stereo at all), these “perception”

options assume generation of non-standard InChI.

Table 2. Stereo interpretation options (lead to generation of non-standard InChI).

Structure perception option Meaning Default behavior (standard;

if no option supplied)

SRel /SRac Use relative/racemic stereo Use absolute stereo

SUCF

Use Chiral Flag in MOL/SD file

record: if On – use Absolute

stereo, Off – Relative

Use absolute stereo (or another

one if requested by SRel

/SRac/SNon switches)

The creation options affects InChI algorithm, not a structure perception. They modify the defaults

which are specified for standard InChI and significantly affect the final appearance (e.g., additional

InChI layers may appear). Whence, using any of creation options qualifies the resulting identifier as

a non-standard one.

Creation options used for generation of particular non-standard InChI may be appended to the

created identifier, see below.

InChI creation options are listed in the following table.

 5

Table 3. InChI creation options.

InChI creation option Meaning Default behavior (if no option

supplied)

 SUU Always indicate

unknown/undefined stereo

Does not indicate

unknown/undefined stereo unless

at least one defined stereo is

present

 SLUUD Stereo labels for “unknown” and

“undefined” are different, ‘u’ and

‘?’, resp.

(new option; see explanation)

Stereo labels for “unknown” and

“undefined” are the same (‘?’)

 RecMet Include reconnected metals

results

Do not include

 FixedH Include Fixed H layer Do not include

 KET Account for keto-enol

tautomerism (experimental;

extension to InChI 1)

Ignore keto-enol tautomerism

 15T Account for 1,5-tautomerism

(experimental; extension to InChI

1)

Ignore 1,5-tautomerism

Note that standard InChI is always generated if no InChI creation/stereo modification options are

specified. Inversely, if any of SUU | SLUUD | RecMet | FixedH | Ket | 15T | SRel | SRac | SUCF

options are specified in the command line, generated InChI will be non-standard one.

Saving InChI creation options; new option “SaveOpt”

The new command-line option “/SaveOpt” (“-SaveOpt” under Linux) allows one to append non-

standard InChI string with saved InChI creation options.

 6

The “SaveOpt appendix” currently consists of the two capital Latin letters which are separated from

InChI string by backslash ‘\’.

Note that this appendix is not considered as an integral part (layer) of InChI itself; rather, it is an

optional complement. It may or may not present after the end of InChI string (by default – no

“SaveOpt” option – it is absent). To signify this, the appendix is separated from the previous

sequence of symbols by a character which may not appear in any other place, a backslash.

Note also that InChI generation option “/SaveOpt” (and saved-options appendix) is not available for

standard InChI as the latter is always created with the same options.

As for the encoding of saved options, the first SaveOpt letter encodes whether

RecMet/FixedH/SUU/SLUUD switches were activated. Each of them is a binary switch ON/OFF,

so it totals to 2*2*2*2=16 values which are encoded by capital letters ‘A’ through ‘P’.

The second letter encodes experimental (InChI 1 extension) options KET and 15T. Each of these

options is a binary switch ON/OFF, so there are 2*2=4 combinations, encoded by ‘A’ through ‘D’.

Note that anything but 'A' here would indicate "extended" InChI 1. Note that here is some

reservation for future needs: the 2nd memo char may accommodate two more ON/OFF binary

options (at 26-base encoding).

The exact encoding scheme is specified in the tables below.

Table 4. Meaning of the 1
st
 SaveOpt letter.

Letter RecMet FixedH SUU SLUUD

A OFF OFF OFF OFF

B OFF OFF OFF ON

C OFF OFF ON OFF

D OFF OFF ON ON

E OFF ON OFF OFF

F OFF ON OFF ON

G OFF ON ON OFF

H OFF ON ON ON

I ON OFF OFF OFF

J ON OFF OFF ON

 7

K ON OFF ON OFF

L ON OFF ON ON

M ON ON OFF OFF

N ON ON OFF ON

O ON ON ON OFF

P ON ON ON ON

Table 5. Meaning of the 2
nd
 SaveOpt letter.

Letter Ket 15T

A OFF OFF

B OFF ON

C ON OFF

D ON ON

Examples:

InChI=1/C9H11NO2.Na/c1-3-5(7(3)9(10)12)6-4(2)8(6)11;/h5-6,11H,1-2H3,(H2,10,12);/q;+1/p-

1/t5?,6?;/i/hD/fC9H10NO2.Na/h11h,10H2;/q-1;m/i10D;\OA

(this identifier was created with options /RecMet /FixedH /SUU and /SaveOpt)

InChI=1/C9H11NO2.Na/c1-3-5(7(3)9(10)12)6-4(2)8(6)11;/h5-6,11H,1-2H3,(H2,10,12);/q;+1/p-1/t5?,6?;/i/hD\KA

(this identifier was created for the same input structure with options /RecMet /SUU and /SaveOpt)

InChI=1S/C9H11NO2.Na/c1-3-5(7(3)9(10)12)6-4(2)8(6)11;/h5-6,11H,1-2H3,(H2,10,12);/q;+1/p-1/i/hD

(this identifier was created for the same input structure with no InChI creation options)

InChIKey and hashing

(No) bugfix for InChIKey encoding

On Fall 2009, there was a considerable interest to InChIKey collision resistance which followed the

report from Jonathan Goodman on the collisions of InChIKey 2
nd
 block which were observed for

stereo isomers of Spongistatin I (http://www.google.com/search?hl=en&source=hp&q=ICXJVZHDZFXYQC).

It should be explicitly stated that the collisions _must_ appear for this molecule having 24

tetrahedral stereo centers and 2 stereogenic double bonds – that is, by far beyond the capacity of

InChIKey’s 2
nd
 block hash. Due to the very essence of hash functions, collisions are unavoidable in

 8

sufficiently large collections. Anyway, during the related inspection, a minor bug was found in the

encoding of hashed InChI, which, in principle, may unfavorably affect the number of collisions.

The description of bug is as follows. SHA-256 algorithm produces 256-bit signature which is then

truncated and encoded into the letters forming InChIKey. For the 2
nd
 block, this presumes retaining

the 37 most significant bits, from 0 to 36, of full 256 bits. Due to a bug, the layout of actually

retained bits is slightly different: 0-31 and 36-39. (Analogously, for the 1
st
 block the truncation

procedure actually retained bits 0-63 and 71 instead of 0-64).

So a full exploration of Spongistatin I stereo isomers and corresponding InChIKey’s was performed

(by generating stereo isomers and computing their InChIKey’s). It was found that for various

subsets of full isomer set, the observed numbers of collisions N perfectly correspond to theoretical

estimates. In the course of preparation of current software v. 1.03 release, the additional numerical

experiments were performed. Namely, the bug in hash encoding was fixed and the numbers of

collisions obtained for different (sub)sets of isomers were compared (i) to analogous numbers

observed for original, non-fixed, version, and (ii) to theoretical estimates. The results are shown

below.

Table 6. Stereo isomers of Spongistatin I: observed average numbers of non-unique InChIKey’s vs. theoretical estimate

for number of collisions (doublets). For the observed values the number of samplings used for averaging is given in

parentheses.

Number of isomers in

dataset

Number of non-unique

keys, original/no bugfix

Number of non-unique

keys, bug-fixed

Theor. number of

collisions (doublets)

50,000 0.006 (500) 0.010 (500) 0.009

100,000 0.024 (250) 0.024 (250) 0.036

250,000 0.13 (100) 0.28 (100) 0.23

370,000 0.51 (100) 0.45 (100) 0.50

500,000 0.90 (100) 0.95 (100) 0.91

1,000,000 3.6 (50) 3.2 (50) 3.6

2,000,000 14.4 (50) 13.8 (50) 14.6

3,000,000 33.1 (50) 31.5 (50) 32.7

4,000,000 59.2 (50) 56.3 (50) 58.2

8,000,000 234.2 (50) 229.2 (50) 232.8

 9

16,000,000 928.9 (40) 926.8 (40) 931.3

32,000,000 3753.1 (30) 3708.1 (30) 3725.3

67,108,864

(full set of 2^26 isomers)

16565* 16456** 16384

* All collisions are double except for 2 triplets

** All collisions are double except for 1 triplet

To enlarge a base for comparison, analogous numerical experiments were performed with the

dataset of the same size, 2^26, and its subsets – but populated with generated stereo _and_ isotopic

isomers of Spongistatin I. The results are shown below.

Table 7. Stereo/isotopo isomers of Spongistatin I: observed average numbers of non-unique InChIKey’s vs. theoretical

estimate for number of collisions (doublets). For the observed values the number of samplings used for averaging is

given in parentheses.

Number of isomers in

dataset

Number of non-unique

keys, original/no bugfix

Number of non-unique

keys, bug-fixed

Theor. number of

collisions (doublets)

50,000 0.016 (500) 0.008 (500) 0.009

100,000 0.064 (250) 0.032 (250) 0.036

250,000 0.29 (100) 0.23 (100) 0.23

370,000 0.56 (100) 0.42 (100) 0.50

500,000 0.96 (100) 0.93 (100) 0.91

1,000,000 3.7 (50) 3.9 (50) 3.6

2,000,000 14.9 (50) 15.2 (50) 14.6

3,000,000 33.2 (50) 34.2 (50) 32.7

4,000,000 58.0 (50) 60.4 (50) 58.2

8,000,000 231.2 (50) 235.5 (50) 232.8

16,000,000 930.5 (40) 947.4 (40) 931.3

32,000,000 3702.1 (30) 3811.2 (30) 3725.3

67,108,864 16328* 16458** 16384

* All collisions are double except for 2 triplets

** All collisions are double except for 4 triplets

 10

All in all, these additional experiments led to the same conclusion: as concerns collision resistance,

InChIKey behaves nearly in theoretical manner, even without a bugfix. Moreover, one can not

definitely state that bug-fixed version performs consistently better than an original one. Given this

conclusion and the fact that the original version InChIKey’s are already wide-spread, it was decided

that the bugfix is not activated in InChI v. 1.03 (2010) software release.

Extended InChI hash

As there were concerns regarding the limited capacity of (2
nd
 block of) InChIKey, a possibility to

output the rest of 256-bit SHA-2 signature for 1
st
 and 2

nd
 blocks is introduced.

This is done with the new command-line options “/XHash1” and “/XHash2” (“-XHash1” and “-

XHash2”under Linux).

Note that the rest of signatures appeared in hexadecimal notation to avoid confusion with InChIKey

(which consists solely of capital English letters).

Example:

InChI=1S/C4H8/c1-3-4-2/h3-4H,1-2H3/b4-3+

InChIKey=IAQRGUVFOMOMEM-ONEGZZNKSA-N

XHash1=82ff0307735072b4ec27b9c093e9486dca09e8df1d0812c9

XHash2=403ee94266e1d8d96d47b99c4b17ff5f92e3a74e3f0f5ab8bc2775bb

InChI2InChI conversion and SaveOpt letters

A specific to InChI2InChI conversion issue is a consistent treatment of standard and non-standard

identifiers, as well as SaveOpt letters. The following rules are implemented.

1. Generating standard InChI strings out of standard ones is disabled.

To ensure standard InChI validity, it may be generated only from a structure, not from another

InChI.

2. Conversion of standard InChI string to a non-standard one is allowed.

 11

If conversion explicitly requires /SaveOpt, the resulting InChI string will be appended with SaveOpt

letters.

3. If source non-standard InChI is appended with SaveOpt letters (after ‘\’) and conversion explicitly

requires /SaveOpt, the resulting InChI string will be appended with SaveOpt letters. If a particular

conversion option requires generally impossible transformation, accounting for the content of source

SaveOpt (e.g., source indicates that input InChI has been created with no metal reconnection option

and conversion requires /RecMet), then 1) warning is issued; 2) conflicting conversion option is

ignored; 3) conflicting option will not affect SaveOpt letters of output string.

4. If source non-standard InChI is appended with SaveOpt letters (after ‘\’) and conversion does not

require /SaveOpt, the resulting InChI string will not be appended with SaveOpt letters. If a particular

conversion option requires generally impossible transformation, accounting for the content of source

SaveOpt (e.g., source indicates that input InChI has been created with no metal reconnection option

and conversion requires /RecMet), then 1) warning is issued; 2) conflicting conversion option is

ignored.

5. If source non-standard InChI is appended with SaveOpt letters (after ‘\’) and conversion does not

require /SaveOpt, “straight” conversion will be performed.

6. If source non-standard InChI string does not contain SaveOpt and conversion requires /SaveOpt,

then 1) warning is issued; 2) /SaveOpt option is ignored; 3) “straight” conversion is performed and

the resulting InChI string is not appended with SaveOpt letters.

Distribution package

Binaries

Included in this package are the following binaries.

File/directory INCHI-1-BIN

Folder win32

 winchi-1.exe InChI Windows program (version 1)

 inchi-1.exe InChI command line program (version 1)

 12

Folder linux/32bit

 inchi-1.gz Linux i386 executable of inchi-1

Folder linux/64bit

 inchi-1.gz Linux amd64 executable of inchi-1

File/directory INCHI-1-API

Folder gcc_so_makefile/result

inchi_main (Linux) the InChI software library demo application

 libinchi.so.1.03.00 (Linux) the shared object

Folder vc9/inchi_dll/Release

inchi_main.exe (Windows) the InChI software library demo application

libinchi.dll (Windows) dynamic link library

InChI API/Library

Most notably, InChI API now allows one to generate both standard and non-standard

InChI/InChIKey’s. For example, an API function GetINCHI() produces standard InChI by default

and a non-standard one if some “InChI creation option” is specified in input parameters. However,

for compatibility with the previous v. 1.02-standard release, API calls which deal only with standard

InChI – for example, GetStdINCHI() - are retained (technically, they provide pre-customized

interface to general-purpose API functions).

The InChI API calls are documented in the separate “InChI API Reference Sheet” document and

source code header file “inchi_api.h”.

License and related

Minor technical clarification is made in references to GNU Lesser General Public License, LGPL.

Referenced now is a specific version 2.1 of this license, http://www.opensource.org/licenses/lgpl-

2.1.php (version 3.0 seems to differ significantly).

 13

CML support/source code

Since 2004, InChI software has a support for CML (Chemical Markup Language). It is provided by

CML reader written – and kindly supplied to NIST/InChI - by Peter Murray-Rust and Simon (Billy)

Tyrrell, Unilever Centre for Molecular Sciences Informatics, University of Cambridge, UK. Some

minor modifications were then made at NIST.

As CML reader has been developed outside InChI team, its source code was never distributed with

InChI software package. Instead, pre-compiled binaries of InChI executables with built-in CML

support were distributed.

Recently, after an interest expressed by users of InChI-discuss mailing list, P. Murray-Rust kindly

provided permission to publish source code of CML reader with InChI package, as a free software

under the same LGPL license as InChI itself. The sources are now included into the distribution

package, and each file has a header suggested by Dr. P. Murray-Rust.

Testing

InChI generation/testing

The new software has been extensively regression-tested against standard InChI v. 1.02-standard

(2009) and non-standard InChI v. 1.02-beta (2007) in both Windows and Linux environments.

The test sets included:

1. "InChI-101" (public). This is a test set of 2,186 structures which has been created previously and

included into software v. 1.01 distribution as "InChI validation suite". The structures include some

very tricky and "chemically strange" ones, to verify InChI behaviour in exotic cases.

2. "NCI" (public). 249,081 structures from "NCI Open Database Compounds", retrieved from:

 http://cactus.nci.nih.gov/ncidb2/download.html

3. "MSL-NIST" (proprietary). 191,436 structures.

4. "MDB" (proprietary). 100,000 structures.

5. "ChemSpider" (proprietary). 17,257,766 structures. ChemSpider database, as of December 2007,

courtesy of A. Williams.

 14

6. "PubChem Compound" (public). 38,966,897 structures. Retreived from PubChem on 2009-09-01.

7. On case-by-case basis, "PubChem Substance" (public) collection was used. This is useful for tests

with "unpolished" structures: in contrast with "PubChem Compound", this collection (of 71,271,452

records) contains non-normalized structures just as they were deposited to PubChem. Retreived

from PubChem on 2009-08-11.

All the above mentioned input files were in MDL SD format. Additionally, there were several test

input files in CML format. The various option combinations were used in the tests.

Above described is related to regression testing of InChI generation. That is, tests assume the

generation of InChI strings (from structures in SD file) and comparing them with InChI's obtained

with "previous-state" software.

Additionally, we tested InChI2InChI conversion and InChI2Struct conversion performed by current

software.

The last case (InChI2Struct) is related to "round-trip" testing:

[Source structure =>] InChI1 => Restored Structure => InChI2

(here successful test means that InChI2 generated from a restored structure does match InChI1; note

that InChI2Struct conversion supposed that the structure is restored from InChI, not from AuxInfo)

The conversion success rate (executable: inchi-1) is summarized below.

Table 8. Conversion statistics.

Dataset No. of

InChI’s

InChI

options
*

Conversion

failure

Conversion

mismatch

Total

problems,

%

Success

rate, %

InChI2InChI conversion

PubChem

Compound

38966897 Std 0 0 0 100

 Non-std-1 0 0 0 100

 Non-std-2 0 327 0.0008 99.999

 Non-std-3 0 0 0 100

 15

 Non-std-4 0 327 0.0008 99.999

 Non-std-5 0 331 0.0009 99.999

PubChem

Substance

60681047 Std 0 0 0 100

InChI2Struct conversion

PubChem

Compound

38966897 Std 7 18359 0.05 99.95

 Non-std-4 51 26428 0.07 99.93

 Non-std-5 51 27221 0.07 99.93

PubChem

Substance

60681047 Std 19 61306 0.10 99.90

* Std standard InChI

 Non-std-1 /SUU /SLUUD

 Non-std-2 /SUU /SLUUD /FixedH

 Non-std-3 /SUU /SLUUD /RecMet

 Non-std-4 /SUU /SLUUD /RecMet /FixedH

 Non-std-5 /SUU /SLUUD /RecMet /FixedH /KET /15T

Bugfixes impact

There were several minor fixes after software release v. 1.02-standard (2009). In particular:

(1) the bug in normalization procedure for some structures (containing N2(+) fragment) which may

result in producing different InChI strings for the same molecule, depending on original order of the

atomic numbers (reported by Timo Boehme on March 2010:

http://sourceforge.net/mailarchive/message.php?msg_name=4B98AD34.5000307%40ontochem.com) was

fixed;

 16

(2) the fix is implemented for minor issues (reported by Hinnerk Rey) related to normalization for

structures containing positively charged tetra-coordinated phosphorus (or sulfur) connected to the

negatively charged oxygen;

(3) the bug in treating stereochemistry of allenes with non-carbon substituents (reported by Burt

Leland) was fixed.

The combined impact of bugfixes is rather small: as estimated using PubChem Substance collection,

only 300 standard InChI strings out of 60,681,047 - that is, 5*10
-4
% - are affected.

