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Abstract—A common general framework of thermodynamic relations between interfacial excess quantities in
multicomponent systems is derived, based essentially on the fundamental Gibbsian treatment of adsorption
phenomena. Both adjoining bulk phases are regarded as equivalent constituents of the system concerned—not only
in the case of fluid interfaces, which are approached in this way in any current exact treatment, but also in the case of
S/G and S/L interfaces, respectively. The algebraic mode of definition of the surface excesses of the
components and of the coupled thermodynamic quantities is adopted, but without reference to imaginary Gibbs
dividing surfaces positioned within the actual system, in order to avoid the necessity of admitting the concept of an
adsorption excess of the solid, when considering the most common mode of evaluation of adsorption from liquid
solutions by immersion experiments.

Applications of the general relations to L/G, S/G and S/L interfaces respectively are demonstrated. In connection
with the latter two, no use is made of the controversial concept of surface tension of the solid. Instead an extra
interfacial free energy term is introduced, as a mean specific quantity for adsorbents with a fixed colloidal texture, but
whose surfaces are inhomogeneous, both geometrically as well as energetically.

The aim of the proposed representation is not the derivation of fundamentally new thermodynamic relations, but to
obtain a unified picture of adsorption at different kinds of interfaces, and to rely as far as possible only on operational
definitions.

1. TilE GENERAL FUNDAMENTAL ENERGY EQUATION

According to the fundamental Gibbsian treatment we
regard the following differential expression of the internal
energy as valid for the whole of an open system consisting
of two adjoining bulk phases separated by an interface
and subject to a common hydrostatic pressure p:

dU=TdS—pdV+FdZ+jLdn (1)

where the term F dZ represents an extra interfacial work
term, with F as the intensive and Z the coupled extensive
variable. Equation (1) is linked to the characteristic
energy function

U= TS—pV+FZ+pn1

and has as its corollary the generalized Gibbs—Duhem
type equation

SdT— Vdp+ZdF+ n d/L =0

which is valid for any displacement of the system along
the multi-dimensional equilibrium surface.

In the case of plane fluid (L/G or L/L) interfaces F may
be identified with the interfacial tension y, and Z with the
surface area A, both of which are measurable quantities.
Then F dZ is identified with y dA5, the well known
expression of the differential surface work performed on
the system when the interfacial area is extended.

The situation is not so simple, however, when one of
the adjoining phases is a solid (S/G or S/L interface) for
two reasons. Firstly, as a consequence of the particles of a

solid being bound to equilibrium positions, the effects of
surface tension as a lateral force acting parallel to the
surface, cannot be observed directly even in the case of a
fairly smooth and energetically uniform surface. Further-
more, in reality a typical adsorbent has a surface which is
microscopically heterogeneous, so the concept of such a
force becomes even more meaningless. Secondly with
compacted coherent solids, th surface area may be
extended by plastic deformation or crushing, but both
procedures involve the application of mechanical stress to
some degree, and thus the structure and energetic state of
the newly created surface will generally differ from the
original one. No clear operational interpretation of the
differential work y dA5 is possible in this instance.

(2) Independent variation of the surface area becomes
impossible, even in principle, with most solid adsorbents
encountered in practice. This is because they either
consist of particles of colloidal dimensions, dispersed or
in more or less loose aggregation (e.g. carbon black
pellets), or they are macromolecular structures consisting
of coherent porous materials with a fixed characteristic
texture (e.g. silica-gels, alumina powders for chromato-
graphic purposes, not to speak of natural or synthetic
zeolites). Evidently, the surface area of such adsorbents
is proportional to the amount presentt and the extensive
factor Z in eqns (1—3) may be identified with ma, the mass
of the adsorbent. This identification is made with the
proviso that dm' be thought of as a "macrodifferential"
representative of the textural properties of any macro-
scopic amount of the given adsorbent. It is common
practice to refer to the mass m a and not to the amount of
substance n a because adsorbents are not usually unam-
biguously characterized chemical systems. In accord with
this convention, it is convenient to split the last sums in
eqns (1—3) and separately write the terms a dm a am a
and m" dj. a respectively, where a stands for the

(3)

1For porous adsorbents this is strictly true only for a fixed grain
size distribution, but generally the outer surface is negligibly small
compared with the inner pore surface of the grains.
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specific Gibbs energy of the bulk of the adsorbent. The
sums in the above equations then need only be referred to
the components of the fluid phase in contact with the
adsorbent, with the tacit assumption that these compo-
nents do not dissolve in the molecular structure of the
adsorbent.

Let us denote the intensity factor corresponding to
z = m a by €. If the specific surface area a of the
adsorbent is supposed to be known and to have a clear
meaning (which is questionable with highly microporous
adsorbents), then €/a is a quantity equivalent to a mean
interfacial tension j'. Because of the fixed texture,
however, the complementary extensive factor A, is, as
explained above, not an independent variable as in the
case of fluid interfaces and one would have to write
a, dma for F dZ.

By introduction of €, the sum a + will appear as the
factor before dma in eqn (1), and it may be noted that
Hill' as well as Tykodi2 and more recently Wagner3 treat
as being actually incorporated into a Such a procedure
seems hardly acceptable, however, because is in fact
tied up with the contact of the two phases and cannot be
attributed to one or the other of them, and its occurrence
in eqn (1) along with jh a is only the consequence of the
fact that the interfacial work term is proportional to m" in
the special case of solid adsorbents with fixed texture.

2. QUANTITATIVE CHARACTERIZATION OF
ADSORPTION BY EXCESS AMOUNTS AND A

GENERAL FRAMEWORK OF THERMODYNAMIC
RELATIONSHIPS BETWEEN INTERFACIAL

EXCESS PROPERTIES

As we know nowadays, intermolecular forces are
generally short range, and significant only between
nearest neighbours (this is, for example, the supposition
underlying the theory of regular solutions) and it is
therefore a safe assumption that the thicknesses of
interfacial adsorption layers are usually of the order of
molecular dimensions. In this sense they may be regarded
as two-dimensional phases, but thermodynamically they
are not autonomous and the boundary between such a
"phase" and the adjoining bulk phases cannot be defined
in any exact, unquestionable way. In view of these
circumstances, any attempts at a separate quantitative
analysis of the contents of the adsorption layer such as
the well-known microtome method of McBain for L/G
systems, or radioactive tracer methods with S/L inter-
faces, can give only approximate resu!ts.t As recognized
clearly by Gibbs, exact definitions can be given without
detailed knowledge of the structure and thickness of the
interfacial layer only for surface excess amounts (some-
times called Gibbs adsorptions). These are defined as
differences between the actual real system and a
reference system which is thought of as consisting only of
suitably chosen portions of the equilibrium bulk phases
actually present, without any contributions arising from
interactions at their common interface. Such or equival-
ent3 definitions are the only operational ones in the sense
that they alone permit unambiguous computation of
adsorption values from experimental data.

A general definition of surface excess amounts is
therefore (with superscript a' to denote excess quantities):

fli = — flaa —nP (4)

where n is the total amount of component i present in the
actual system, X.a and x/' its respective equilibrium mole
fractions in the bulk phases adjoining the interface, and
a and n ' the chosen reference amounts of the latter

phases a and 13 respectively. Evidently the latter amounts
have to be specified for n to become definite and there
are different ways of making this specification according
to the nature of a particular problem. It may be noted
incidentally that eqn (4) and all the following definitions
and relationships can also be formulated in terms of
masses and mass fractions respectively, provided chemi-
cal reactions are excluded (as was implied above for solid
adsorbents).

Once the choice of n" and n has been made, the
corresponding surface excess X of any extensive
thermodynamic property (energy, entropy, volume etc.) is
defined as:

X =X_flaXma flXm (5)

where X is the total value, while Xma and Xm" represent
the respective molar values of the property in question in
the equilibrium bulk phases.

The object of the thermodynamics of interfaces is to
establish functional relationships between the different
surface excess quantities, in terms of their dependence on
the relevant intensive thermodynamic variables. It is a
remarkable fact in this context that a general ther-
modynamic framework can be set up formally without
specifying the reference amounts n a and n '. On
multiplying the fundamental eqns (1—3), referred to the
molar properties of the respective bulk phases (i.e.
without the interfacial term) by n a and n , respectively,
for example:

and

flUn/' = fl((TSm" pVm +

fl(Sm dT Vm3 dp + x/' d) 0

(6)

(7)

then from eqns (4) and (5), respectively, there results:

= TS —pV + FZ +

dU = TdS" —p dV +FdZ+p dn,

S"dT— V"dp +ZdF+ n'd/L =0.

(8)

(9)

(10)

As explained in the foregoing section, one has to set

F = y, Z = A,, F dZ = y dA, (fluid interface)
(11)

in these equations in the case of fluid interfaces. One may
deal with A, and a mean value inconnection with fairly
smooth solid surfaces, but for solid adsorbents with fixed
texture it is more appropriate to select and m a as the
pertinent variables. It has to be considered, however, that
the "free" surface of a solid in itself (i.e. in vacua or in an
"inert" gas atmosphere) has already an extra energy over
the bulk value, and that this extra energy is decreased by
the contact with an interacting fluid (exothermic heat of
adsorption or of immersion). A value €" (or eventually
j) characteristic of the "free" adsorbent must be thus
taken into account when expressing the excess surface

tThere are nevertheless exceptions, as, for example, the
well-known monolayer films of insoluble "oils" on the surface of
water, or well-defined chemisorbed films on solids.
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energy. Under these conditions we substitute into eqns H' dT —--d + — dY — 0 23
(8—10) and those which will follow below: T2 T T) ' ' (

F = €' = a p dZ = €' dm', which is a Gibbs—Duhem type relationship similar to eqn
C' < 0 (textured adsorbent). (12) (10), but possibly more advantageous in some respects

because S has been eliminated.
We may further define the excess Helmholtz free The relationships derived above show clearly that,

energy: apart from the necessity of including extra interfacial
terms, the thermodynamic framework relating surface

A' = U' — TS = —pV + FZ + jtn (13) excess properties is formally similar to that referring to
equilibria of homogeneous bulk phases. Probably because

dA = dU — TdS — S dT of this similarity, it is frequently erroneously believed that
= — s dT— p dV + F dZ + p dn (14) a set of such quantities defines a real "surface phase". It is

with the object of dispelling this misconception that the
the surface excess enthalpy: above deductions have stressed the quite formal, abstract

character of the thermodynamics of surface excess
W = U' + pVC' = TS + FZ + : (15) properties. Since no instructions have been given so far

concerning the reference amounts n ' and n , respec-
dW = dU + p dV + V dp tively, there is no immediate link to any actual reality and

= T dS + V' dp + F dZ + j dn (16) the whole set of the derived relationships is no more than
a logical structure at this stage. Further specifications are

and the surface excess Gibbs free energy: needed to establish useful relations with measurable
quantities and thus to make the formalism operational.

G = W — TS = FZ + (17) The most suitable choice of such specifications depends
on the kind of real system under consideration, as will be

dG = dW — T dS —S dT shown in the following sections for L/G, S/G and S/L
= —s dT + V dp + FdZ+ jt dn'. (18) interfaces.

It is usual to regard the characteristic functions W — FZ 3. THE THERMODYNAMIC ADSORPTION ISOTHERM

and G —FZ as the surface excess enthalpy and Gibbs EQUATION OF GIBBS

free energy, respectively, when the reference amounts n Under isothermal and isobaric conditions, the first two
and n'3 are chosen so as to fulfil the condition V = o terms in eqn (10) vanish. Imposition of the latter condition
(see IUPAC Manual4). is reasonable in the case of S/L interfaces because

From eqn (14) and (18) expressions of the surface excess moderate variations of the pressure (arising from varia-
entropy may be derived: tion of the vapour pressure with composition of liquid

mixtures or of more or less dilute solutions) do not affect
— = — (l9 noticeably the thermodynamic properties of the adjoining

\ 0T I \ 9T Ip,Z,n1'
' / condensed phases. If, however, one of the phases is a gas

(L/G or S/G), then concentration changes in the latter at
and these lead to the Gibbs—Helmholtz type relations: constant temperature correspond generally to pressure

changes and vice versa, so that imposition of the condition

—A T(aA \ dp = 0 would be incorrect. It is possible to envisage a
U — —

series of varying relative compositions under constant

and pressure in the case of gas mixtures, but this is a very
special case. Taking advantage of the freedom left by the

H' — — '20 general thermodynamic framework, it is the most useful
\T Ip,z,nj

' ' convention to select the reference system in this context
so that the surface excess volume vanishes, i.e.

or in a more compact form:
V" = V — n — fl = 0. (24)

U
.8T)

— T This equation, which can be traced back essentially to

and
Guggenheim and Adam,5 is the algebraic expression of the
original procedure of Gibbs, who used for his deductions
an imaginary surface called the Gibbs dividing surface,

/ found in the actual system parallel to the interf ace.4 For
reference the homogeneous bulk phases should be

where J( = —A /T and Y = — G/T are the surface thought of as extending with unchanged properties up to
excess Massieu and Planck functions, respectively, this surface, without any extra interfacial contributions at

By differentiating both forms of Y as they follow from their contact. The concept of the Gibbs dividing surface
eqn (17), namely: may be intuitive in connection with smooth surfaces, but

is difficult to visualize in the case of porous adsorbents,

Y' = — + = —- + 22 whereas eqn (24) has always a clear-cut meaning. It may
T T ' / be noted that adoption of the convention V = 0 means

that U and A become identical to W and G
where Y = — /2/T and making use also of eqn (16), we respectively.
obtain: After the above comments, there follows immediately
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(1)_ ( an'\—
\BAS I T,V,n1,c1,c1

(1) V(c' + c4) c + C4ni =n— =fli i gill2 c1+c1

(26)

equilibrium partial vapour pressures may be used instead
of the activities.

The convention F1 = 0 or n = 0 corresponds according
to eqn (4) to:

n4xi4 =0 (33)

and this, together with the volume convention, eqn (24),
determines unambiguously the reference amounts n' and
n4 respectively. Simple algebra leads to:4

= A çW = —fli—Ci V — C?.

(34)

This expression of the relative surface excess amounts is
independent of surface tension measurements and is
practically useful since all the quantities occurring on the
right hand side are measurable, although it is questionable
whether the necessary experimental accuracy can be
ensured in practice.

Equation (34) provides for the possibility of an
equivalent alternative definition of relative surface excess
concentrations:3

(35)

the generalized form of the differential Gibbs adsorption
isotherm equation:

dF = — -djt (dT, V dp = 0). (25)

Further discussion of this equation is best undertaken
separately for each kind of interface.

4. L/G INTERFACES

In accordance with the previous discussion in this case
we define V" 0, F = y and Z = A,. Introducing further
surface excess concentrations

F = n?/A,.

Equation (25) assumes the well known form:

dyT=—F dp1.

Since in a two-phase equilibrium system of K compo-
nents only (K — 1) chemical potentials are independent,
one of the jt terms, say p, may be eliminated from eqn
(27). From the respective isothermal Gibbs—Duhem
equations, each referred to unit amounts of the two
equilibrium bulk phases, there follows (with superscripts I
and g instead of a and f3, respectively):

dp = --- x1 d1 c dp = x? dj.r

(c — c?)dp
d/Li''2 1 gCl —Ci

(27)

This definition is possibly more intuitive. It indicates the
amount of i which has to be added (or removed in case of
negative adsorption) in order to maintain the original

c? dp (28) values of c1 and c when the interfacial area is increased,
or in other words, in order to compensate for the changes

and thus: caused by adsorption at the newly created portion of the
interfacial area. This is assuming that the total volume of
the system is kept constant.

(29)
The factors of c' and c4 in eqn (34) are the respective

volumes V1 and V4 of the reference amounts of the two
equilibrium bulk phases so that:4

Introducing this into eqn (27), this yields:
= A F1m = n — Vc,1 — V4c?. (34a)K/ 1 g \

dyT = (F1 " " —F) dp. (30) . . .
1=2 \ c1 — c1 / Evidently, it is possible to remove arbitrary parts of the

bulk phases from the actual system without disturbing the
It has to be recalled now that no decision has been made adsorption equilibrium, provided that the removals are
hitherto the fix the reference amounts n1 and occurring made away from the interface. Especially, one may make
in eqn (4), which define in a general way the excess the volumes in the two phases equal:
amounts n or, in the present context, the excess surface
concentrations F. We are free to choose them so as to V1 = V4 = V/2 (36)
make F1 vanish and then, if we define the F1 correspond-
ing to this choice by FP the surface excess concentra- and the expression of n1 becomes then:
tions relative to component 1, eqn (30) simplifies to

K (37)
d'yT = — F1' dp1. (31)

=2 with:

From this there follows the classical adsorption equation — V(c + c 4)
38

of Gibbs: n1— 2

F° = — (=--\ =— (_=x_ 32 In the domain of low vapour pressures, the gas phase
\3 ln a1 IT,a1g1,

' ' concentrations may be neglected compared with those in
the liquid (unless i is a very sparingly soluble gas

This equation enables the calculation of relative surface component) and then the following approximate expres-
excess concentrations from measurements of the de- sion may be written:
pendence of surface tension on composition provided the
relevant activity coefficient data are available. If the gas (1) (1) c
phase may be assumed to behave ideally, the respective

= A, F = n —n1 = n — n1 —r (39)
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where n and n1 are now the respective amounts present
in the liquid phase. Equation (39) is the form quoted
mostly in elementary textbooks, with the additional
well-founded implication that adsorption at the "free"
surface of solutions is effected practically by concentra-
tion shifts in the surface layer of the liquid only.

We refrain here from a detailed discussion of the other
current type of surface excess quantities, based on the
so-called reduced surface excess amounts4 and denoted
by n" or These correspond to a choice of a
reference system which contains the same total amount of
substance as the actual system, i.e.:

, +g = =

The exact expression of 10(1) is quite similar to the right
hand side of eqn (34) (formally, one has only to drop the
subscript 1 everywhere in the latter) and using the same
approximation which led to eqn (39), we obtain:

fl) =A, F.(n) = —

From this as well as from the exact expression there
follows:

n1" 0 (or ç(n) = o)

demonstrating most impressively the strict displacement
character of this kind of adsorption, that namely positive
adsorption of one component must be compensated by
negative adsorption of one or more of the others.

Although the Gibbs adsorption isotherm equation is by
far the most important outcome of capillary ther-
modynamics, it is of interest to note further consequences
of the general eqn (23) which reads, when applied to the
present case:

(H"/T2) dT + A, d(y/T) — n dY1 0. (43)

In view of

(0Y/aT),,' = HIT2 (44)

where Hi is the partial molar enthalpy of i in the solution,
the following expression of the temperature coefficient
of -y/T at constant composition of the liquid solution can be
derived:

(3(y/T\ - _______
0T )p,x' A,T2

Neglecting the gas phase contributions, it follows from
the general definitions given in eqns (4) and (5) and in view
of eqns (39) and (41), respectively, that:

H°' — n1'"1I-I/ = — n''I-I' = H — nH
—=A,h——A,u (46)

where n7 and u7 are the extra surface enthalpy and
energy, respectively, per unit surface area. Equation (45)
thus assumes a simpler form:

or:
(
3(y/T)\
3T

= -
3T

which is similar to the well-known relation connecting
surface tension and extra surface energy per unit area in
the case of a pure liquid. It may be noted that h7, though
also a surface excess quantity, is not referred to some
portion of the equilibrium bulk solution, but to a fictitious
system in which the adsorbed amounts would have the
same partial molar enthalpies as those characteristic of
the bulk liquid.

Since the surface tension of solutions, like pure liquids,
decreases with increasing temperature, it follows from
eqn (47) that the extra surface energy is a positive
quantity in the case of solutions also, and can be computed
if the temperature coefficient of the surface tension at
constant composition is measured. (As the extra surface
energy in practice is attributed only to the condensed
liquid phase, the condition of constant pressure indicated
at the left hand side of eqn (47) is unimportant, at least in
the domain of low vapour pressure.)

5. S/G INTERFACES6

(41) As explained in Section 3, the generally adopted
convention in connection with S/G interfaces is V = 0
and according to the discussion in Section 2 we set
FZ = €'m a (see eqn (12)) when adsorbents with fixed
colloidal texture are involved. The general eqns (9—10) and

(42) (13—18), respectively, then assume the special forms:

U = H = TS" + €'m a + /J4fli (48)

dU = dW = T dS" + dm" + dn1 (49)

S dT+m" d€'+n1dp =0

A" = G" = €'m" + /J4fli"

(50)

(51)

dA = dG' = —S" dT + dma + p dn" (52)

where the indices i and thus the summations refer only to
the gaseous components.

The operational definition of the adsorption excesses is
now:

flu" = fl = flu — (53)

where the gas volume is generally identified with the
experimentally determined helium deadspace of the
adsorption vessel; g and n1 are then the total amount of
gas and the amount of i respectively present in the vessel

(45 under equilibrium adsorption conditions.
In contrast to L/G interfaces, the excess amounts fl"

are directly measurable quantities, whereas €' can be
computed only by referring to the thermodynamic
adsorption equation of Gibbs, which reads, for the present
case, as follows:

3€' 1 / 3€' " fl"
(—) =——-- (54)

3/Lu T,p RT 3 ln Pu T,p m

For a pure gas (or when the jth components are
"inert" from the point of view of adsorption) this last
equation may be written in the integrated form:

RT
n"dlnpm (55)

(47)
and the prescribed integration can be carried out without
any difficulty if the adsorption isotherm, i.e. the function

(40)
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n (p) is known experimentally. It is evident that has to
be smaller than €a, and decrease with increasing
adsorption, in order to conform with the general Gibbsian
principle that positive adsorption must be accompanied
by a decrease of the interfacial free energy. It may be
noted that in current literature the relationship corres-
ponding to eqn (55) is usually written in terms of the
highly problematic surface tension equivalent €, and not
with that of €'. It is clear by our reasoning however that in
fact only the value with respect to that of the
solid/vacuum interface can be computed from experimen-
tal adsorption data.

It is usual and expedient to refer the extensive
thermodynamic excess properties to unit amounts of the
adsorbates, i.e. to reckon with the partial molar values of
these functions, defined generally as:

xr = (:)Ta, i).

There follows from eqn (49):

and from eqn (52):

= H = TS' +

A = G =

(56)

(57)

(S =0 (65)

or, in view of eqn (60), the well-known expression of the
isosteric heat of adsorption:

= R(:(;)
ma,ni;

(66)

For a single pure gas, dj.t can be expressed, irrespective
of whether the behaviour is ideal or not, as:

d =—S dT+V dp (67)

and there follows, by eqn (63), the Clausius—Clapeyron
equation:

(3p/8T)ma,n =

or the equivlaent formulation:

(68)

(t9 ln p /8T)ma,na = —&Hm/(TpV) = —&Hma /(RT2).
(69)

It may be noted that the equality of U and H1 does
not involve equality of the differential energy and
enthalpy of adsorption, respectively. The former is

(58) defined by:

This latter equality is evidently in conformity with the
general requirements of thermodynamic equilibrium.

Any one of the p terms can be expressed in terms of
the equilibrium gas phase:

= H — TS? (59)

and thus, eqn (57) can be transformed to give:

H/a — H AaH/a = T(S/a — S) T&S/'. (60)

This sequence of equations has to be interpreted as
referring to the transfer of a unit amount of i from the gas
phase into the adsorbed state without disturbing the
equilibrium. Since such a transfer cannot involve more
than an infinitesimal amount, the quantity &H/a is a
differential enthalpy and &S/a the differential entropy of
adsorption of component i, respectively.

It is easy to show that &H/a is identical with the
so-called isosteric heat of adsorption of i. From eqn (49) it
follows that:

dHa = TdS" (ma, n' = const)

and further differentiation with respect to n/a yields:

dH/a = TdSP. (62)

A comparison with the total differential of 1:1 (eqn (57))
then gives the result:

SPdT+dj.=0 (63)

along any isostere. For an ideal gas mixture, the
expression of dp, is:

di = — SP dT +RTdln p

and by substituting this into eqn (63) we obtain:

La UP = UP - = LaH/a +p1'? = aHP +RT.
(70)

In the case of non-ideality of the gas phase, VP is the
partial molar volume of i according to Amagat's rule.

6. S/L INTERFACES7'8

In the case of adsorption from liquids onto solids, as
with gas adsorption, the directly measureable quantities
are the concentration and enthalpy changes brought about
by adsorption. However, owing to the practically neglig-
ible compressibility of liquids under usual conditions, no
perceptible concentration change occurs when a chemi-
cally inert pure liquid is brought into contact with a solid,
so that we speak of adsorption only in connection with
solutions (liquid mixtures). Furthermore, adsorption from
the latter is not accompanied by a spectacular accumula-
tion of matter as a whole in the interfacial layer as is seen
with gases, where significant volume changes at constant
pressure are observed. Rather, adsorption manifests itself
only by shifts in composition of the solution.

Quantitative measurements of adsorption are carried
(61) out mostly by the immersion method: a weighed amount

of adsorbent of mass m" is immersed into a total amount n°
of solution of known initial composition characterized by
the mole fractions x of its components, and the final
equilibrium mole fractions x, in the supernatant bulk liquid
are determined by some suitable analytical method.
Because x,° =x, = 1, some of the differences

= x,° — x, (x =
o) (71)

are positive and others negative, but the positive and
negative adsorptions must occur simultaneously and be
strictly complementary. It may be noted incidentally that
such displacement effects are encountered also with

(64) adsorption of gas mixtures, but owing to the significant
compressibility of the latter then are not bound to the
condition of strict reciprocity.
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The apparent amount adsorbed n °x is identical with
the reduced surface excess as defined formerly by eqn
(41). Since n1(= n °x10) is the total amount of i and n(= n°)
is the total amount of all the solution components together
in the actual system, we have:

= — = fli (n)=

This latter definition is to be preferred because it is not
applicable to the immersion experiment only, which is not
the only possible way to determine this can be
achieved, for example, also by frontal chromatography
where the equilibrium mixture characterized by the x is
fed onto the column so that the procedure does not rely on
the determination of the ix.9

By analogy with eqn (39), relative adsorption may also
be defined as:

a-(1) fl 0/ 0 X1 \fl = fl — flrefXi fli — — X = fl (X — — X, J. (73)\ Xi /
The sum of the relative adsorptions of all the components,

,a'(l) = n°(1 —
x10/x1)=

For the case of a binary solution the different surface
excess amounts are interrelated as follows:

= _)= x1n2"1 = —x2n1"2.

In view of the already mentioned fact that adsorption
from solution is not accompanied by significant volume
changes, it may appear somewhat surprising that accord-
ing to the above definitions the surface excess volume V"
cannot be set equal to zero. This would be possible only
by admission of an adsorption excess of the solid
adsorbent4 which does not, however, undergo concentra-
tion changes. Such a formal procedure would be hardly
realistic in our opinion (remembering that we do not speak
of adsorption of a pure liquid, neither at the L/V nor at a
S/L interface). Indeed, taking the amount and volume of
the solid adsorbent in the reference system as equal to
that in the actual system, and neglecting any variations of
the partial molar volumes of the solution components
caused by shifts in composition and/or by adsorption,
there follows for the excess volume, based on the general
definition (eqn (5)), the relationship:

V"= fliVi flef XVI

= (n1 — fle0Xi)V = n,"V.

It may be seen that would vanish only in the case of
all the V values being equal, but in view of eqn (74), even
then this would not be true for V"'. As a consequence,
the excess interfacial energy U" and the interfacial
excess Helmholtz free energy A" cannot be equated with
the enthalpy H" and the Gibbs free energy G"
respectively, as was the case with L/G and S/G interfaces.

At constant pressure, which is the usual condition for
the experimental determination of adsorption isotherms
from solution, and assuming F = €' and Z = m a as for
adsorbents of a fixed texture, the general Gibbs adsorp-
tion isotherm eqn (25) becomes:

— d€' = m" dp, (T, p = const).
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(77)

Making use of the Gibbs—Duhem relation x d =0,
one of the djL terms can be expressed as the function of
the others and, especially for binary solutions, eqn (77)
can be written in any one of the alternative forms:

fl2 n°ix2 n°ix1d€' -dL2=----d/L2=——yd/L1(72) m mx1 mx
0 0

flLIX2 fl Xi
=RT———dlna2=RT-------dlna1.mx1 mx2 (78)

Since all the quantities occurring at the right hand side are
experimentally accessible, eqn (78) can be integrated,
usually graphically, to give €' as a function of the
composition of the equilibrium solution. This function is
evidently without maxima or minima if the adsorption of
one of the components is preferred throughout, but will
exhibit an extremum at any composition corresponding to
an adsorption azeotrope. This is often met with in
connection with pairs of completely miscible liquids.
There follows also by eqn (78) that €' decreases with
increasing concentraation of the positively adsorbed
component, in compliance with the general principle laid
down by Gibbs. It may be noted that according to its
definition in eqn (12), €' is a negative quantity, although
both of its terms, and ?, respectively, are positive. The
latter, however, being a constant at constant temperature,
means that a decrease in €' corresponds to one in €.

(75) The excess enthalpy and Gibbs free energy, either
reduced or relative, can be specified now as follows:

(74)

H"'= TS" +€'m'

G=€ma

(79)

(80)

In the simplest possible case, of immersional wetting of
an adsorbent by a pure liquid, since there is no adsorption
(no change in the mole or mass fraction of the liquid), eqn
(80) reduces to:

g"=G"/m" =€' (81)

so that €' is equal in this case to the specific Gibbs free
energy of immersional wetting and corresponds, if
referred to unit surface area, to the quantity commonly
called wetting tension. The quantity h" = H"/m a is, on
the other hand, in this case the calorimetrically directly
measurable specific enthalpy of immersional wetting by
the pure liquid (the so-called heat of wetting, q).4

From the general eqn (23) there follows the counterpart
(76) of eqn (45):

______ —
H" — n"H H — nH1

\ 0T )p,Xj maT2

(82)

It may be noted, however, that the analogy with eqn (45)
does not extend to the sign: the wetting of a solid by a
liquid is an exothermic process, and the numerator of the
right hand side of eqn (85) is therefore a negative quantity.
Equation (82) may also be written in the form of a
Gibbs—Helmholtz type relation. Since in the case of
wetting by a pure liquid, as mentioned above, the excess
enthalpy is equivalent to the heat of immersional wetting,
it follows that the latter, when referred to unit surface
area, is also connected with the wetting tension through a
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Gibbs—Helmholtz relationship, a fact generally passed
over in the literature.

Excess enthalpy and the heat of immersional wetting
cannot be equated, however, in the case of solutions
where composition shifts caused by adsorption are also
involved. The isothermal enthalpy of immersional wetting
is defined as:

= H — ma a — °Hm"° (T, p = const) (83)

where H,,,1'° is the molar enthalpy of the solution before
immersion of the solid and h the specific enthalpy of the
solid in vacuo. is an experimentally accessible
quantity, but practical difficulties may arise in its
determination, especially with porous adsorbents where
activated adsorption may occur. Any calorimetrically
measured heat of immersion in a solution is therefore not
necessarily equal to the true difference between the initial
and final equilibrium values.

Since the immersion experiment is connected directly
with the reduced excess amounts, we introduce the
reduced excess enthalpy, defined as:

H(=H_mna n°Hm' (T,p =const). (84)

It therefore follows that:

= + n°(Hm' — Hm1'°) = + n°IXHm' (85)

where LHm' is the change in the molar enthalpy of the
bulk solution corresponding to the change of its composi-
tion caused by adsorption. Since this latter change
depends not only on the kind of adsorbent and the
composition of the solution in which it is immersed, but
also on the ratio n °/m a used in the calorimetric
experiment and/or the determination of a point of the
adsorption isotherm, the measured specific heat of
immersion, /m a will also depend on this ratio and is
thus not a quantity characteristic of the nature of the
adsorbent and adsorbate alone. On the other hand, from
experimental data, eqn (85) may serve for the computa-
tion of the directly not accessible excess enthalpy,
provided the enthalpy of mixing as a function of solution
composition is known.

Applying the general energy expression, eqn (2), to the
present case we can write:

further:

and

U+pV=H= TS +ma(jf +€)+ njpj

ha = Tsa +12a +€a

= TSm"° + ::

There follows then, from eqn (83), an alternative
expression for (noting that the respective amounts
n°x1° remain unchanged in the immersion experiment):

= TIXSW + m'€' + n° x°p (T,p = const)
(89)

and for the Gibbs free energy of immersional
wetting:

zG =H —ThS =ma€I
+n° x°zp (T,p = const) (90)

(86)

where /Li(= /Li — p°) represents the changes in the
chemical potentials of the solution components brought
about by adsorption. which may be called the
entropy of immersional wetting, is defined in a similar way
as using eqn (85). zS can be computed from
experimental data only for binary solutions because only
in this case is calculable by graphical integration of the
Gibbs adsorption isotherm eqn (78). For a pure liquid, eqn
(90) becomes identical with eqn (81), i.e. zG = G'.

The excess adsorbed amounts n"" do not appear in the
last two equations because, as a consequence of the
conservation of mass, all the iXn terms are zero, whereas
energy, entropy etc. of the system are not conserved in
the immersion experiment when carried out isothermally
or nonadiabatically. It may be noted further that, as
mentioned before, zV (the eventual volume change
connected with the immersion experiment) can be
considered negligibly small in general so that there is no
practical need for a distinction between energy and
enthalpy of immersional wetting on the one hand and
between the corresponding Helmholtz and Gibbs free
energies on the other hand.

CONCLUDING REMARKS

The aim of this lecture was to show that a generally
valid exposition of the equilibrium thermodynamics of
adsorption, based on the Gibbsian concept of interfacial
excess amounts, appears possible only in a quite abstract,
formal way. The characteristic quantities occurring in
such a formal framework need further specification in
order to make it operational, but the most expedient
choice of these specifications has to be different for
different types of interfaces, according to the special
distinctive features of the latter. This has been shown in
connection with three main kinds of interfaces. The
quoted set of general relationships, as well as those
referring to the special types of interfaces, are, of course
far from complete, but can be amplified without difficulty
by using standard methods of chemical thermodynamics
to treat further problems of interest, such as the pressure
dependence of adsorption at the interface between two
immiscible liquids or at S/L interfaces.
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