
Pure & App!. Chem., Vol. 48, pp. 435—439. Pergamon Press, 1976. Printed in Great Britain.

SURFACE EQUATIONS OF STATE IN
ADSORPTION FROM SOLUTION

ROBERT S. HANSEN and K. G. BAIKERIKAR

Ames Laboratory-ERDA and Department of Chemistry, Iowa State University, Ames, IA 50011, USA

Abstract—Evaluation of a surface equation of state generally involves an evaluation of its ability to represent raw
experimental data, or information derived from such data, after the parameters of the equation have been adjusted to
optimize this representation, followed by an evaluation of the physical reasonableness of the optimizing parameters
in terms of the physical model on which the equation of state is based.

This process is analyzed critically for the adsorption of polar organic compounds at the mercury-electrolytic
solution interface using high precision electrocapillary data as test data and the Frumkin and Flory—Huggins
equations as test equations. In one approach, ir vs ln a data were represented by a set of hyperbolae with coefficients
chosen to give best least squares representations of data, and adsorption isotherms obtained by analytical
differentiation; parameters for the isotherms were selected to give best least squares fits to these data.
Parametrizations depending on high surface pressure limiting tangents to ir vs ln a plots, intercept and slope of low
surface pressure ln (ir/a) vs ir plots, were also investigated. Parameter sets obtained by different methods of
parametrization agreed only moderately well, reflecting sensitivities to different portions of the experimental data.
When all Flory—Huggins parameters were freely adjusted, best fits resulted when the water co-area was taken as
larger than the organic compound co-area, a physically unrealistic result.

INTRODUCTION

The Frumkin isotherm equation has been consistently
employed by the Russian school of electrochemists led by
Damaskin1 in representing the adsorption of organic
compounds from aqueous solution by mercury. Conway
et al.29 and Lawrence and Parsons'° have used a modified
Flory—Huggins isotherm for interpretation of similar
kinds of data. The modified Flory—Huggins isotherm is

Ba =
(1

0
e (1)

where a is the solute activity, 0 the fractional surface
coverage, B, x, and a are parameters. When x = 1, eqn (1)
reduces to the Frumkin equation; when x = 1 and a =0,
eqn (1) reduces to the Langmuir equation. Physically, the
parameter B is related to a standard free energy of
adsorption (note that (0/a)—t B as a —* 0), x is introduced
in a quasilattice model of the adsorption region according
to which an adsorbate molecule displaces x solvent
molecules, and a is a parameter associated with
interactions between adsorbate molecules in the adsorbed
layer. Conway et al. and Lawrence and Parsons have used
molecular models to estimate values of x in the systems
they studied, thus fixing the value of x a priori in eqn (1).
The non-integer values of x sometimes used1° are
conceptually awkward in terms of the model on the basis
of which eqn (1) is derived. Previous work in this
laboratory1' indicates that, for polar organic molecules in
water, the choice x = 1 generally leads to a much better
representation of experimental data than a value x =3
which might be expected from size considerations.

The present work undertakes to discuss rather gener-
ally eqn (1) which (including its Langmuir and Frumkin
variants) is quite widely used, and the surface van der
Waals equation of state

(ir+1302)(1—0)= OFmRT

in which ir is the spreading pressure (boundary tension
for adsorbate-free solution minus boundary tension of

adsorbate solution, Fm is the moles adsorbate/cm2 in a
complete monolayer, R is the gas constant, T the absolute
temperature, and f is a parameter associated with
interactions between adsorbate molecules in the adsorbed
layer. Equation (2) through the Gibbs adsorption equation
implies the isotherm equation

0 1 0 2f30Ba = exp 1j—ii
- (3)

Similarly, eqn (1) implies the surface equation of state

IT

fjj O—a02—x{O+ln(l—0)}. (4)

Equation (3) is little used in representing adsorption from
solution data. Equations (1) and (3) are attractive for
comparison, however, because the first stems from a
localized monolayer model, the second from a mobile
monolayer model, both offer some latitude in parametriza-
tion and in this sense are rather general representatives of
their respective types. Both permit two-dimensional
condensation for appropriate values of the interaction
parameters. Viewed as equations derived by statistical
thermodynamics, both involve crude approximations in
configuration counting (eqn (1)) or space exclusion (eqn
(2)) and crude approximations for the energy of interac-
tion between adsorbate molecules. The first set becomes
serious in both cases as 0 > 0.5, and the second becomes
very serious when the energy of interaction per pair times
the probability that a given molecule has a partner
approaches or exceeds kT where k is Boltzmann's
constant. This will almost certainly be the case for polar
organic molecules in water when 0 > 0.5.

THEORETICAL

It is plain by inspection of eqns (1) and (3) that in either
(2) case a plot of 0 against a will start at the origin, have an

initial slope B, and will approach 1 as a approaches
infinity no matter what values the parameters x, a, and f3
have (x is of course positive). It should be apparent that
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isotherms whose curvatures are never positive (and these
are very commonly encountered) are roughly established
by these statements, so they will need to be well-
documented to learn much about the other parameters.

Equations (1) and (3) are easily developed in MacLaurin
series in 0 to give eqns (5) and (6), respectively

Ba =
0 +(x _2a)02+{2a(a —x)+x(x +1)}03

+• (Flory—Huggins)

Ba =0+2(1_-)02+f3_j
+ (i FmRT)}0 + (v.d. Waals). (6)

Plainly the coefficients x, a, and f3 permit arbitrary
adjustment of the coefficient of 02 in both expansions.
Hence eqns (1) and (3) can both be adjusted so that the
isotherms they represent will have the same initial
curvatures (as well as the same initial slopes, with 0 -*0 as
a —*0 and 0 -*1 as a -* xi). It should also be noted that the
initial curvature in eqn (5) depends on (x — 2a), so that for
any choice of x a value of a can be chosen to give the
desired curvature.

Stebbins and Halsey'2 have given an interesting
analysis of hard-disc monolayer isotherms. In this case,
the quantity rrl(OFmRT) can be developed in power series
in 0, with the coefficients through terms in g3 available
from rigorous theory (this of course implies coefficients
through terms in o in the expansion of Ba in powers of
0). Stebbins and Halsey compare the coefficients so
obtained with those obtained for the Langmuir isotherm
(a variant of eqn (1), and so of eqn (5), with x = 1 and
a =0) and with those obtained for the Volmer Equation (a
variant of eqn (3), and so of eqn (6), with /3 = 0). The
coefficients for terms in 0, 02, and O are lower than exact
theory by factors of from 2 to 3 in the case of the Volmer
expansion and up to 12 in the case of the Langmuir
expansion. Plainly inclusion of parameters such as x, a,
and /3 permits improvement of these deficiencies from the
viewpoint of empirical data representation, but the
analysis of Stebbins and Halsey plainly shows that the
physical models underlying both eqns (1) and (3) are
seriously defective.

For treatment of data at relatively low surface
pressures it is convenient to consider plots of in (ida) vs
ir. If the double layer charge varies linearly with 0 at fixed
polarization, as frequently appears to be the case, then
plots of this type for data taken at different polarizations
should superimpose on appropriate ordinate translation.
MacLaurin series representations of these plots are also
readily developed to terms in and are respectively

lnlnBFmRT+(a —1x'—-—-a \ 211'mRT

Plainly the two expansions indicate the same intercepts
and the parameters x, a, and /3 can be selected to give the
same initial slope. The initial slope in eqn (7) can establish
a — (1/2)x, but establishes neither a nor x separately.

If the initial slope of a plot of in (IT/a) vs i is positive,
then the plot must have a maximum; the Gibbs adsorption
theorem shows that this maximum occurs when 0 =
IT/FmRT. Equations (1) and (3) can then be used to
calculate the value of in (iT/a) at this maximum for the

(5) Fiory—Huggins and van der Waals monolayers, respec-
tively with the results

fir' / ir
ln i — i = ln BFmRT + x lni 1—

\a/max \ FmRT

+ 2afj- (Flory—Huggins) (9)

ln (!) = ln BI'mRT + in(1 —
FmRT)

+FRT IT
213ir

(I'mRT)2
(v.d.Waals) (10)

Anaiysis of boundary tension data at high solute activities
is conveniently represented by plots of ir against ln a; if
the double layer charge varies linearly with 0 at fixed
polarization, then plots of this type at different polariza-
tions should superimpose by abscissa translation. An
asymptotic representation for the Flory—Huggins
isotherm valid at high surface pressures is readily found
to be

iT = FmRT[l — x + a + in B + in a + x{e2cBa}x]

(Flory—Huggins). (11)

This yields a well defined limiting tangent with slope
1'mRT and intercept on ln a axis — inB —1+x —a again
depending on a combination of x and a; appearance of x
in the power dependence of the first order deviation from
the limiting tangent suggests the possibility of getting at x
directly in this way, but the range where a single
correction suffices is sufficiently small that this approach
is not very promising. The corresponding asymptotic form
for the van der Waals equation leads to

1/3 u
IT l'mRTIr +lnB+lna+lnu+f—+•••

(van der Waals) (12)

where to sufficient approximation u = [in {Ba/in Ba}r1.
The appearance of the term in in u obscures the limiting
tangent; the limiting slope is plainly FmRT but the tangent
is ill-defined. Comparison of eqns (1) and (3), however,
should indicate that, no matter what parameters are
chosen, the activity given by eqn (3) will exceed that given
by eqn (1) for 0 sufficiently close to 1. A lattice model will
in general be favored over a mobile model as full coverage
is approached. This point has been emphasized by
Stebbins and Halsey'2 in their comparison of the
Langmuir and Voimer equations, and they also analyzed
possible phase transitions between mobile and localized
monolayers. It is, therefore, unlikely that eqn (12) will
prove useful, for it is unlikely that mobile monolayers will

(8) exist at vaiues of 0 approaching full coverage.

— [(a —

x)2+ (x + 3a)2] (1T)2

(Flory—Huggins) (7)

ln=lnBFmRT+(j4— i)jjj

+'_fi__(4_2) (fj)221'mRT

(v.d.Waals).



Surface equations of state in adsorption from solution 437

RESULTS AND DISCUSSIONS

Details of apparatus, experimental procedures, and
electrocapilary data analysis have been reported previ-
ously.'1"3"4 The present experimental work concerns the
adsorption of butanol-1, isopentanol (3-methyl butanol-1),
n -pentanoic acid and n -hexanoic acid.

Figure 1 shows a composite ir vs in a plot representing
the adsorption of butanol-1 at the mercury-electrolytic
solution interface at 25°C. The base solution is .0.1 N
aqueous perchloric acid. Butanol-l and the other organic
solutes used in the present work are all of limited
solubiity in water and their activities were taken equal to
their concentrations divided by their saturation concent-

Fig. 1. Composite ir vs in a plot for butanoi-1. Points shown are
experimental data; the curve is least squares fit to the data with a
linear combination of hyperboiae. The RMS deviation of the points
from the curve is 0.18 dyn/cm. The limiting tangent (dashed line)

drawn through the monolayer region is also shown.

rations in the base electrolyte solution. This approxima-
tion could possibly affect conclusions of the present work
only to the extent that solute activity coefficients varied
appreciably over the experimental concentration range.
This range extended from zero to half saturation
concentration.

The data in Fig. 1 are derived from 11 electrocapillary
curves (base electrolyte and 10 different solute concentra-
tions) each documented with points at 50 mY polarization
intervals. Twenty-five constant polarization ir vs in a plots
were then made (each with 10 points) and their abscissas
translated to give best superposition, with a plot at the
electrocapillary maximum taken as reference. A linear
combination of hyperbolas was chosen, using a computer
program, to best fit the 250 points shown in Fig. 1. The solid
curve shown is the analytic representation of the data thus
obtained, and represents the data with anRMS deviation of
0.18 dyn/cm. Data for other systems were similarly treated
with similar RMS deviations, indicating that in these
systems ir vs in a plots at different polarizations are indeed
superimposable by abscissa translation and that therefore,
within the limits of sensitivity of the superposition test, the
double layer charge must vary linearly with 0 at fixed
polarization and the parameters x, a, and 13 must be
independent of polarization in these systems.

Figure 1 also shows the limiting tangent (which of
course also corresponds to the asymptote of the analytic
representation of the data). The slope of this tangent was
used to obtain Fm for all further data analysis in the
butanol-1 system, and the intercept provided an estimate
of the Flory—Huggins parameter group ln B + a + 1— x
[see discussion following eqn (11)].

The best analytic representation (linear combination of
hyperbolas) of the data shown in Fig. 1 was then
differentiated analytically to obtain in a as a function of 0,
and parameters B, x, and a in the Flory—Huggins
equation, eqn (1), selected through a computer program to
best fit the in a vs 0 data derived from experiment. Check
calculations showed that similar parameters resulted
when ir vs 0 data were used with eqn (4) as test equation.
Data for other solutes were similarly treated.

Figure 2 presents in (IT/a) vs ir data with butanol-1 as

SURFACE PRESSURE ir(dynes/cm)

Fig. 2. in (u/a) vs IT plot for butanol-1 at uncharged mercury- 0. IN HC1O4 solution interface. The iimiting tangent
(dashedline) drawn through theiow surface pressure region is also shown.
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adsorbate, showing the low surface pressure limiting
tangent. The intercept on the i = 0 axis is In Bl'mRT for
either the Flory—Huggins or van der Waals model (see
eqns (7) and (8)), and since I'mRT 5 known the intercept
provides an estimate of the parameter B. The slope of the
initial tangent is (a —(l/2)X)/FmRT or (f3IFmRT) — 1,
providing estimates of the parameter group a — (l/2)x in
the Flory—Huggins model and of the parameter /3 in the
van der Waals model.

Figure 3 shows similar plots at various polarizations
based on data with n -pentanoic acid as adsorbate. The
resemblance to Fig. 2 is plain and Fig. 3 also makes plain
that curves at different polarizations are related by simple
ordinate translation. It can also be seen that scatter of
data at low values of ir may lead to uncertainty in location
of the initial tangent. An alternate source of an equation
relating parameters lies in the plot maximum as indicated
by eqns (9) and (10). If the plot intercepts are sufficiently
well defined to establish in BI'mRT then eqn (10)
establishes /3 and eqn (9) furnishes a relation between the
two parameters a and x.

Table 1 shows parameterizations of the Flory—Huggins
representations of the four systems according to several
schemes. In all schemes the limiting tangents to ir-ln a
plots such as Fig. 1 are used to establish Fm.

In the first method, analytical representations of data
such as shown in Fig. 1 were differentiated analytically to
obtain in a vs 0 curves, and Fiory—Huggins parameters
were selected by a computer program to obtain the least
mean square deviation from the ln a vs 0 data.

In both the second and third method, the limiting
tangent intercepts in the IT vs ln a plots such as Fig. 1
were used to establish the sum of parameters (ln
B + 1— x + a), and the intercepts ir = 0 of plots such as
Fig. 2 were used to establish in B. Hence both methods 2
and 3 lead to the same values of the parameter B and the
parameter sum (1— x + a). If x is fixed at 1 (Frumkin
isotherm), this information suffices to establish all other
parameters uniquely.

In method 2, the slope of the initial tangent in plots such
as Fig. 2 is used to establish (a —(1/2)x) as explained
following eqn (8); since 1— x + a is also known a and x

Table 1. Parameters of the Flory—Huggins equation for several
organic solutes with size factor x varied for best fit and fixed at 1

(Frumkin equation)

Solute Method B x a a'(x = 1)

Butanol-1 (1) 7.77 0.43 0.62
1O10Fm = (2) 6.93 0.64 0.98 1.341'
5.19 mol/cm2 (3) 6.93 0.95 1.29 1.351:

Isopentanol (1) 5.59 0.46 0.95
10'°Fm = (2) 5.11 1.14 1.76 1.621'

4.76mo1/cm2 (3) 5.11 1.12 1.74 1.591:
n-Pentanoic acid (1) 8.59 0.44 0.60
lO'°Fm = (2) 9.11 1.071'
4.80 mol/cm2 (3) 9.11 (0.85) (0.92) 1.061:
n-Hexanoic acid (1) 8.57 0.59 0.96
10'°Fm = (2) 7.63 1.291'
4.20 mol/cm2 (3) 7.63 1.30 1.59 1.341:

F,. for all methods based on limiting slopes of ir vs ln a data as
shown in Fig. (1)
Method 1: Parameters B, x, and a selected for least mean square

deviation from ln a vs 0 data using computer
program.

Method 2: Based on intercept of ir vs ln a limiting tangent (Fig.
(1)) and intercept and slope of initial tangent to
ln (IT/a) vs ir plot (Fig. (2)).
tdenotes omission of initial tangent slope.

Method 3: Based on intercept of ir vs ln a limiting tangent (Fig.
(1)), intercept of initial tangent to ln (IT/a) vs ir plot
(Fig. (2)) and maximum in this latter plot.

1:denotes omission of limiting tangent intercept
(Fig. (1)).

can be determined independently. In method 3, the
additional relation between x and a is obtained from the
maxima in plots such as Fig. 2, as indicated in eqn (9). If x
is fixed at 1, the parameters in B and a can be also
obtained by considering only the intercept and maximum
in ln (ir/a) vs ir plots, without using the intercept of the
limiting tangent to the IT vs in a data.

The different methods of parameterization lead to
moderate differences in the parameters selected, reflect-
ing in part different regions of the surface pressure-
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Fig. 3. in (i/a) vs ir plots for n-pentanoic acid at the following potentials: (1)0.000V, (2) — 0.150V, (3) —0.200V, (4)
0.150V, (5) 0.200V, and (6) 0.250V. All potentials are in volt vs ECMof mercury in0.1N HCIO4 solution.
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activity data emphasized in the treatment. All three
methods lead to very good representations of data at high
activities; the computer parameterization emphasizes in
addition data at intermediate activities, while the two
methods based on ln (IT/a) vs IT plots emphasize data at
low activities. Values of x obtained were systematically
about 0.5 with the computer parametrization, about 1.0 by
the other two methods. These values are far below the
value of about 3 which might be expected from size
considerations, and fits obtained with x =3, B and a
optimized for this choice of x, were much less satisfactory
than similar fits starting with x = 1 (which in turn were
somewhat less satisfactory than those obtained with the
parameters listed in Table 1).

The van der Waals equation, eqn (2), proved quite
satisfactory for fitting data in the range 0 � 0 � 0.5, with
values of 0 based on the I'm values listed in Table 1. A
substantial extension in range (to about 0 = 0.8) could be
achieved by replacing the term (1 — 0) on the left side of
eqn (2) with the term (1 — bO), with b <1. This is
equivalent to using a higher value of I'm than that obtained
from the limiting slope of the IT vs ln a plots as given in
Table 1, or a smaller co-area (e.g. 21 A2 instead of 32 A2 in
the case of butanol-1). Even with the additional parame-
ter, it appeared impossible to choose parameters in the
van der Waals equation to represent data for IT>
15 dyn/cm. The argument of Stebbins and Halsey'2 as to
the instability of a mobile monolayer with respect to

transition to a lattice monolayer at sufficiently high
activity is consistent with this finding.
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