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COMPUTER IDENTIFICATION OF MASS SPECTRAa

Fred W. McLafferty

Department of Chemistry, Cornell University, Ithaca, New York 14853, USA

Abstract - Automation of the interpretation of unknown mass spectra is a
necessity in many laboratories . Two types of computer programs have
been developed for this; "retrieval systems compare the unknown against
a file of reference spectra, while interpretation' programs identify various
molecular features to aid the interpreter. Particular emphasis here will be
placed on systems of each of these types developed at Cornell, the
"Probability Based Matching" and 'Self-Training Interpretive and Retrieval
System".

INTRODUCTION

The gas chromatograph/ma s s s pectrometer/computer (GC/MS /C OM) sys tem has revolutlon-
ized the analyses of many kinds of complex organic mixtures . In this decade there has been
an exponential growth in GC/MS/COM applications to areas such as , drug metabo-

1 insect pheromones , body fluids , and liquid fuels . With modern GC/MS/COM systems
which produce hundreds of unknown mass spectra per day, an obvious bottleneck is the capa-
bility for molecular identification of these unknowns. Many laboratories have recognized
the potential of computers as aids to this problem; a recent review lists 187 references (Ref.
2). The reader is referred to this review for details on the variety of algorithms proposed;
this paper will emphasize the systems which are now most commonly used.

A number of factors govern the choice and design of such algorithms. These include type of
computer central versus "mini"), cost per run, data base quality and availability,
unknown spectral quality, sample purity, degree of user interaction necessary, and identifi-
cation confidence desired. Thus there is little chance that one system will answer all needs
for mass spectral Identification.

We perceive two distinct approaches, "retrieval" and "interpretation", to the identification
of unknown mass spectra; these appear to be convenient ways to classify and design com-
puter algorithms, although in many systems these approaches substantially overlap. A
retrieval system attempts to find a match for the unknown mass spectrum by comparing It
against each reference spectrum in a file. If a sufficiently good match is found, the problem
Is solved. Otherwis e, the interpretive system attempts to find as much Information as pos -
sible on the unknown's molecular features, such as elements, molecular weight, and sub-
structures.

RETRIEVAL SYSTEMS

Most retrieval systems compare the unknown and reference spectra, ranking the latter
according to the number of peaks in common and, In some cases, the similarity of the abun-
dances of each pair. Most systems do not compare all of the peaks (many use <10 peaks),
usually selecting the most abundant. The PEAK option of the Mass Spectral Search System
(Ref. 3) operates in a "conversational" mode to allow user choice of peaks. Compilations
are available (Ref. 4), however, so that matching of this kind can be done without the aid
of the computer. Even with our present reference file representing over 30,000 dIfferent
compounds, it is possible that a mass spectrum can be uniquely defined using only a few
peaks because of the unusually high information content of a mass spectrum (Ref. 1). In
such cases, very simple matching systems will suffice, and most GC/MS/COM configura-
tions now have such options available. If their limitatIons are kept in mind, these can be
of substantial help. However, computer capabilities are improving so rapidly that automatic
routine screening of unknown mass spectra with the best matching systems appears feasible,
and this discussion will concentrate on these.

Note a: Computer-Aided Interpretation of Mass Spectra, XXIV. For Part XXIII, see Ref. 1.
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The MIT retrieval system
The system developed by Blemann and coworkers (Ref. 5) , one of the most widely used and
successful, utilizes the two most abundant peaks in each 14 mass unit range. This peak
selection at least partially overcomes two distinct disadvantages of systems which choose
only the most abundant peaks of the whole spectrum. (1) The most abundant peaks in the
unknown mass spectrum are often the most common, such as those of low mass , and thus
provide less selectivity than, for example, less abundant peaks at high mass; the MIT
system forces the use of peaks in all mass ranges . (2) Experimental artifacts such as mass
discrimination or changing sample concentration (such as conducting the MS scan on the side
of a GC peak) often distort the relative abundances in the unknown mass spectrum as a
function of mass; even if, for example, the high mass peaks have been reduced by an order
of magnitude in this way, this system should still find the same two peaks as the largest in
a particular 14 mass unit range. A "Similarity Index" is calculated for the comparison
against each spectrum in the reference file, and the identity of the spectrum or spectra
giving the highest values are listed for the user.

The Probability Based Matching (PBM) system
PBM was actually developed for real-time identifications with a microprocessor-controlled
GO/MS system (Ref. 6) , and has been extended to utilize a large data base (Ref. 7) . PBM
incorporates two unique features , (a) data "weighting" , proven valuable for document
retrieval from libraries (Ref. 8) , and (b) "reverse search" , which has been proposed
independently by Abramson (Ref. 9).

The weighting involves the two principal types of data in low resolution mass spectra,
masses and abundances (Ref. 10) . The probability of occurrence of particular abundances
(based on 100% for the most abundant peak) should follow a log normal distribution (Ref. 11).
This was shown to be true for a data base of 18,806 different compounds (Ref. 10); abundance
ranges differing by a factor of two in their occurrence probability are � 0 . 2 4% , �1 . 0%,
� 3 .4% , �9 .0% , � 1 9% , � 3 8% , and � 7 3% . The probability of occurrence of the different mass
values also varies widely. For example, because larger molecular fragments tend to decom-
pose to give smaller fragments, higher rn/e values are less common in mass spectra, the
probability decreasing by a factor of 2 approximately every 1 30 mass units . This is a sur-
prisingly smooth function at high rn/e values , but in the lower mass range there can be much
larger differences in the probability of occunence. , although rn/e 39 , 41 , and 43 ions
of 1% or greater abundance are found in more than two-thirds of all reference spectra, peaks
such as at rn/e 34 and 340 occur less than 10% as frequently. In an unknown mass spectrum
if abundant ions at rn/e 34 and 340 are matched by comparably abundant ions in a reference
spectrum, this is far more significant in indicating that a correct retrieval has been made
than if the unknown's /e 39, 41, and 43 peaks were matched in a reference spectrum.
These abundance and mass uniqueness weightings are used to calculate the probability that
the match occurred by chance and is thus a "false positive"; the reciprocal of this proba-
bility (log base 2 "confidence index, K") is used to rate the degree of match.

The second unique feature of PBM, "reverse searching", is valuable for the identification of
components in mixtures. In, PBM ascertains whether the peaks of the reference spec-
trum are present in the unknown spectrum, not whether the unknown's peaks are in the
reference. Thus the reverse search in effect ignores peaks in the unknown which are not in
the reference spectrum, as they could be due to other components of the mixture. Although
reverse searching should thus reduce the capabilities of PBM for matching unknown spectra
of pure compounds, this apparently Is more than offset by the increased capabilities resulting
from the data weighting. The system has been tested with over 800 "unknown" mass spectra
taken from a large collection of mass spectra from diverse sources (Ref. 12), and for the
spectra of pure compounds its performance has shown to be generally superior (Ref. 7 & 13)
to the MIT system, and thus surely to those systems matching only the more abundant peaks
in the spectrum. For mixtures, as expected, the reverse search procedure of PBM results in
a substantially improved performance over these other systems. However, many of the
advantages of the MIT and PBM systems are complementary, so that for important unknowns
it is often wise to try both. Of course, the user must accept the final responsibility for the
identification.

Improvements to PBM
Recent research at Cornell has focussed on several improvements to PBM. Revisions are
being made to weight the data more accurately. For example, extra credit is justified if the
reference molecular ion is present in the unknown; some peaks often occur together
rn/e 43 and 57), so that their combined weight should be reduced; credit should also be
reduced for "flagged peaks" (Ref. 7) and similar artifacts. As has been suggested previously
(Ref. 14), the subtraction of the. reference spectrum of an identified compound from the mix-
ture spectrum should produce a residual unknown spectrum which is easier to identify. This
approach has been implemented (Ref. 15) so that at the end of the PBM run the computer
automatically subtracts the best-matching reference spectrum (or, at user command, some
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other reference specirum) from the unknown spectrum, notifies the user of any significant
residual , and on command does a PBM match on the residual spectrum. Although PBM
is a reverse search , its recall is lower for components in lower proportion in the mix-
ture; thus subtracting out the contribution of an abundant component improves the PBM recall
for other mixture components.

The PBM algorithm has also been applied (Ref. 16) to predict the number of bromine and
chlorine atoms in ions of unknown mass spectra from the relative abundances of isotopic
peaks . The theoretical isotopic patterns for 36 Br/Cl combinations are matched against
peak "clusters" in the unknown spectrum with a modified PBM algorithm. The confidence
values of the best Br/Cl assignments are further reinforced if they are consistent with the
mass differences found for other peak clusters . In a test using the spectra of 2 ,670 com—
pounds in which 814 contained bromine and chlorine, 90% of the predictions were correct.

INTERPRETIVE SYSTEMS

Basically, interpretive systems attempt to emulate the human interpreter. Their procedures
may include tabulation of information from other sources (few samples are "total unknowns"),
seeking special information from the spectrum (isotopic , molecular weight,
"nitrogen ru, exact mass measurements) , and then applying structure-spectra correlations
to elucidate the structural details . This last step, which is the one most commonly found in
interpretive systems , has been approached in s everal ways . These again res emble ways
taken by the human interpreter, who may obtain the relevant structure-spectra correlations
by inspecting reference mass spectra to find related , from tables available (possibly
in the interpreter's memory) on this type of compound, or by applying mechanistic rules which
detail the speciral relationships to be expected in more general structural situations . In this
discussion the types of interpretive systems will be classified rather arbitrarily as "Pattern
Recognition" , those that resemble the first approach; "Artificial Intelligence" , those that
resemble the latter two; and the Cornell "Self-Training Interpretive and Retrieval System"
(STIRS) , which attempts to combine these.

Paftern Recognition
Even in the use of early retrieval systems (Ref. 17) it was noted that the best matching
spectra often were of compounds containing similar structural features to that of the un-
known. For example, in the PB M system four "cia s s es of match" have been defined: I,
identical compound or stereoisomer; II, class I or ring position isomer; III, class II or
homolog; a: IV, class III or an isomer of class III compound formed by moving only one
carbon atom. The recall/reliability performance of PBM was evaluated separately for these
four matching criteria; at the 50% recall level 65% of the compounds (low MW set) selected
matched within the class I criteria, but over 95% matched within the class IV criteria. Thus
most of the "wrong" answers which are retrieved by a matching system are of closely related
molecular structures, so that a matching system can have interpretive value for the unknown
spectrum for which a corresponding reference is not in the file.

Probably the most elegant systems for such automated correlations are those which incor-
porate "pattern recognition" or "learning machine" principles. Extensive research on
development and applications of these methods has been carried out, in particular by
Isenhour and his students (Ref. 2 & 18), but these do not appear to have been used appre-
ciably as yet for actual unknowns. "Training" of the algorithm prior to use must be carried
out for each functionality sought, which requires extensive computer runs if done on a large
data base. A recent study (Ref. 19) comparing a "K-Nearest Neighbor" pattern recognition
system to STIRS indicated that at present the latter is generally superior for substructure
identification (y fl).

Artificial Intelligence
A number of interpretive systems have been developed which utilize known structure/spectral
correlations. Probably the most sophisticated of these is the Stanford "Artificial Intelli-
gence" (Al) method of Lederberg, Dj erassi and coworkers (Ref. 2 & 20). In this, heuristic
DENDRAL is used to generate all possible molecular structures with prescribed limitations
(Ref. 21); spectra for these are predicted from empirical mass spectrometry rules. Such rules
can be generated with the aid of a special program Meta-DENDRAL (Ref. 22), which provides
an algorithm for the discovery of MS fragmentation rules from empirical data of known com-
pounds. To date complete Al programs have been generated only for a relatively few special
compound classes, such as estrogenic steroids (Ref. 20). These programs are among a
variety of special chemistry/molecular structure algorithms available on the Stanford com-
puter to outside users (Ref. 23).
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Self—Training Interpretive and Retrieval System (STIRS)
STIRS (Ref. 24) combInes a knowledge of mass spectral fragmentation rules with an empirical
search for correlations of reference spectra. To accomplish the former 15 classes of mass
spectral data have been selected which are indicative of particular types of structural
features; for example, low mass ions can be characteristic of electron-donating species
such as the amino group and aromatic , while the masses of neutrals lost from the
molecular ion can indicate electronegative functionalities . However, there are no pre-
designated spectra/structure correlations; , STIRS identifies particular molecular
features by matching the unknown's spectral data in each of the 15 classes against the
corresponding data of all the reference file spectra and computes a match factor (MF)
indicating the degree of similarity, In each data class the fifteen reference compounds of
highest MF values are saved . If a particular substructure(s) is found in a significant
proportion of thes e compounds , its pres ence in the unknown is probable . Absence of a sub-
structure is not predicted, as the mass spectral features of one substructure can be made
negligible by the presence of a more powerful fragmentation-directing group . The data base
for the system includes information from 29 , 468 different organic compounds containing the
common elements H, C, N, 0, F, Si, P, 5, Cl, Br, and/or I. All structures of these com-
pounds have been coded in Wiswesser Line Notation (WLN) to facilitate computer handling
of siructure data.

To utilize the Information provided by the STIRS system, the results for each data class are
examined and the common structural features identified. To aid this process, in a recently
implemented system (Ref. 25) , the computer examines the data for the presence of 179
frequently found substructures . The probability for the pres ence in the unknown of each
substructure is predicted using a random drawing model . Knowing the frequency of occur-
rence of a specific substructure in the file, this method indicates the probability that the
prediction of its presence in the unknown occurred at random. From this probability the
confidence for each prediction is calculated. For example, in the STIRS data base the
phenyl substructure is found to be present in 28% of the compounds . Statistically on the
average this subsucture would occur in 4 of any 15 compounds in the data base, including
the top 15 compounds selected in a STIRS data class . On the other hand if phenyl is found
in 10 of the 15 compounds, the probability that this occurred by chance is only 1 in 113, so
that the confidence in the phenyl prediction is >99%, or a false positives value of <1%,

Peak s election for a number of STIRS data clas s es has been improved by statistical testing
on a large group of unknowns (Ref. 2 6 & 27) Recently the performance of the improved
STIRS system has been examined for the identification of the 101 most common substructures
using 6OO "unknown" spectra selected at random from thedata base (Ref. 28) , For the
"overall match factor" , a weighted combination of the individual data class , 58% of
the substructures present were correctly identified (58% "recall") with only 1 .0% of the
postulated identifications being incorrect (1% "false positives "). Not surprisingly, the
best performance is found for substructures which are known to give characteristic peaks or
neutral losses. For example, the carbonyl shows only 33% recall at the 1% false positives
level, as compared to recalls of 95% for trimethylsilyl, 89% for the steroid skeleton, and
87% for thiazole. In the case of a carbonyl group there is no distinct peak associated with
the substructure, but the visibility of the group increases in carbonyl-containing substruc-
tures such as acetyl and benzoyl. A current research program is testing an enlarged list of
such substructures chosen for their ability to correlate with spectral features (Ref. 29), so
that STIRS should show a substantial improvement in its recall ability for these substruc-
tures.

STIRS versus other interpretive systems
STIRS is the only generally-available interpretive system applicable to the mass spectra of a
wide variety of compounds. It has been available to outside users for nearly four years, and
its rapidly increasing use is indicative of utility for a variety of problems. Probably the
most important reason for the general applicability of STIRS is that it requires no pretraining
for the mass spectral behavior of particular structural moieties, in contrast to the pattern
recognition and Artificial Intelligence schemes described above. For STIRS, the 15 classes
of mass spectral data have been selected to be indicative of different compound types or
substructures, but without designating what these types or substructures are. STIRS then,
in effect, trains itself to interpret the unknown mass spectrum by matching the unknown data
in each of these classes against the corresponding data for all of the reference spectra;
particular substructures or types of compounds which are found in a substantial proportion
of the best-matching reference compounds have a correspondingly high probability of being
present in the unknown. Thus STIRS does not have to be pretrained to recognize the
pres ence of any particular structural feature; the thousands of res earch papers that have
already appeared on mass spectra/structure correlations testify to the enormity of the task
of developing an Artificial Intelligence type system applicable to a wide variety of multi-
subs tituted compounds. On the other hand, pattern recognition systems must be pretrained
to recognize particular structural features. A recent comparison of the K-Nearest Neighbor
(KNN) pattern recognition system with STIRS (Ref. 19) which used the same data base and
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substructure assignments showed (Table 1) that at comparable recall (RC) levels STIRS gave
a much smaller number of false positives (FP). It was concluded that the application of mass

TABLE 1. ComparIson of KNN and STIRS

Substructure
% In
file

KNN
3/5 3/3 �2% FP

STIRS� 0.5%FP

RC FP RC FP RC FP RC FP

Ester, anhydrlde 19 29 4.3 19 0.8 55 2.1 50 1.4

Phenyl 28 71 11.6 51 3.3 75 5.0 67 3.4

Chlorine 8 54 0.8 47 0.5 74 0.3 74 0.0

Doubly-branched C 11 41 4.1 25 1.0 44 3.4 42 1.5

20 Substr. average 14 43 7.5 27 2.0 42 1.9 36 1.2

spectral knowledge In the selection of parameters employed In the KNN classifier could give
KNN results comparable to those of STIRS.

Other STIRS improvements
The list of substructures specifically sought by STIRS must of necessity be limited to the
more simple and common molecular fragments . However, it would be obviously advantageous
if the computer could inspect the molecules representing the best-matching spectra for the
maximal substructures which they have in common. For an algorithm recently developed at
Cornell to do this (Ref. 30) , Dot—Plot symbols based on Wiswesser Line Notations are used
to generate binary occurrence vectors representing the molecules . A Compatibility Table is
constructed from these vectors; 1kcovert' incompatibility positions are cleared as well as
positions not in agreement with "neighbor lists" and "degree lists" representing the con-
nectivities of the molecules . 1½ special analysis of this optimized Compatibility Table then
yields the longest node-string paths , which represent the optimal substructures . Computa-
tional time requirements vary from 0 .2 seconds for simple aliphatic and monocyclic com-
pounds to 100 seconds for steroids; implementation on a routine basis will obviously require
improving the algorithm's efficiency.

A key problem In mass spectral Interpretation is the assignment of molecular weight (MW);
for STIRS this Is critical , as the neutral loss assignments for the unknown spectrum must be
based on an assumed MW value. Approximately 15% of mass spectra have no molecular Ion,
and In others Its assignment may be confused by impurities or ion-molecule reactions . An
effective algorithm for MW assignment has been published by Dromey and coworkers (Ref.
31) , based on the assumption that primary neutral losses from the molecular Ion will match
secondary neutral losses from the fragment ions . STIRS already Incorporates several data
classes for primary (MF 5 , 6) and secondary neutral losses; a Cornell MW algorithm under
development (Ref. 32) ranks the trial MW values by the degree to which the substructures
found in their corresponding MF 5 , 6 results match those Indicated by the other data classes,
whose results are MW Independent. This MW program finds the best trial MW values by
first attempting to Identify elements such as Br and Cl from their isotopic patterns (Ref. 16),
by predicting the odd- or even-parity of the MW value (the nitrogen rule), and restrictions
according to logical neutral losses weighted by the secondary losses observed. Preliminary
results of this program appear promising.

System performance evaluation
Examples of PBM and STIRS applications will be presented In the talk; a variety of these will
be published elsewhere (Ref. 33-35), and will not be repeated here. The user In need of
such methods would prefer more than just examples, however, as evidence on which to
select a method. Because of the wide variation in needs, the user should try a variety of
spectra representing his problems. For development of new algorithms, or Improvements to
present ones, however, it would appear that evaluations should be quantitative and statis-
tically valid, and that any claims for Improved performance should be accompanied by such
data.

Recently we proposed (Ref. 36) that two types of evaluations are needed for automated
systems used for the retrieval and Interpretation of unknown spectra. The basic performance
of such systems should be measured by their recall (), the proportion of structures pre-
dicted correctly ('a) relative to the total possible correct predIctions "present" and
by their false positives (a), the number of cases of incorrect "present" predictions (If)
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relative to the pos sible total number of such false predictions (Pf) . Increasing the strictness
of the identification criteria should make FP more favorable but decrease RC; thus the
evaluation should include a range of RC/FP pairs to cover the potential needs of the user.
Note, however, that when the system Is applied to an unknown spectrum, the reliability (j)
of the resulting prediction is determined by the probability that it is correct, RI. = Ic/(Ic + If).
It follows that BL = Pc.RC/(PcRC + Pf) , so that RL depends , in addition, on the occur-
rence probability of the particular structure in the unknown and in the reference file.

System availability over computer networks
At present it appears that most sophisticated retrieval and interpretive systems with the most
comprehensive and accurate data bases are the ones that are also available over extensive
computer networks , CYPHERNET and TYMNET. In addition, Artificial Intelligence methods for
particular compound classes are available through telephone line connection to the Stanford
computer (Ref . 23).

The Mass Spectrometry Data Centre (MSDC) In Aldermaston, England, has set up the Mass
Spectral Search System (MSSS) in cooperation with NIH and EPA in the United States; this is
being operated through the Cyphernetics Division of ADP Network Services , Inc. (Ref. 5).
This system currently operates with a data base containing some 30, 000 mass spectra of dif-
ferent organic compounds . Charges include an initial fee of $400 , an annual subscription
fee of $300 per institution, charges for computation, and $10 —$15 per hour for connect time.
Algorithms available include the user interactive PEAK search with average charges of $3 -$6
per spectrum and the Biemann/MIT search, costing $6 per spectrum of $2 in overnight batch.

The Cornell TYMNET system (Ref. 37) has available the PBM retrieval and STIRS interpretive
algorithms both are substantially improved versions , updated at regular intervals to incor-
porate research improvements as described above. The present Cornell PBM system employs
a data base of 41,429 different spectra of 32,403 different compounds, including the spectra
of 2,365 compounds unique to the Cornell collection. There are no Initial or annual fees for
use of the Cornell/TYMNET system. Individual PBM searches are $10 per unknown spectrum,
or $2 .50 for overnight batch runs for users who have prepaid the data base royalties. STIRS
runs are $15 per unknown spectrum, and lower prices are also available for STIRS batch runs.
The only other charge is a $5 per hour TYMNET connect time assessment.
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