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Abstract - At present, two different methods are employed
to take into account the structural contribution of non-
central intermolecular interactions. The first is the
perturbation method, which should work well at not too
high densities; the second method tries to separate in an
approximate way the configurational part and the
orientational part of the partition function.
The perturbation method can be varied by making different
choices of the reference system and the perturbing potential,
and some significant choices will be outlined. If the
non—central part of the intermolecular interaction is a
dipolar part only, the density dependence of the Kirkwood
g-factor should be positive in first order perturbation.
Structures like in fluid acetonitrile, where the density-
dependence of the Kirkwood g-factor changes sign, can only
be explained by a more complicated intermolecular interaction,
or by the unknown higher order terms in the perturbation
scheme.
The approximate factorization of the partition function into
a configurational and an orientational part is less
developed, but looks very promising, especially for getting
insight into the behaviour of a liquid at high densities, up
to triple point densities.

INTRODUCTION

Before treating liquids composed of molecules with non-central forces, let
me briefly recapitulate the theory of central-force liquids. The main
breakthrough of the last 15 years was the recognition that the structure of
fluids at high density is solely determined by the repulsive branch of the
intermolecular interaction (1-4). This is particularly true if long-range
forces are absent, and if the division of the potential into a repulsive
and an attractive branch is performed according to the suggestion of Weeks,
Chandler and Andersen (3) (fig.1). One might visualize that the attractive
branches of the potentials, which the neighbouring molecules exert on the
central molecule, superpose to a homogeneous background potential (fig.2).

w

Fig. 1. Decomposition of a Lennard-Jones-type potential, t (r),
into a part representing only repulsive forces, c0(r), and a
part representing all attractive forces c1(r), viz.c(r) =
e (r)-I-c1(r). Thus: t (r) = c(r)+n*(r<r*); c (r) = O(r�r*).

= _c*(r<r*); e(r) = c(r) (r�r*). °(After Ref.3).
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Fig. 2. Schematic representation of the influence of two
neighbouring molecules on a central molecule (circles with
radius c/2) when only the attractive part of the potential
in the Weeks-Chandler—Andersen decomposition is considered
(broken curves) . The particles are at somewhat larger
distance than r*. The corresponding background potential
obtained by superposition is rather smooth (solid curve) with
a shallow minimum at the position of the central molecule.
In the three—dimensional multi—particle case, an increased
smoothing effect ("smearing") is to be expected. (After Ref.4).

This attractive, homogeneous background potential is responsible for the
cohesive energy, but has no influence on the structure, as no forces are
exerted by it. In mathematical terms, the free energy is then given by the
free energy F of the assembly interacting with repulsive forces, plus a
perturbation germ taking into account the attractive potential

F = F0 +
J1(r)g0(r)4r2dr. (1)

This simple possibility of calculating the free energy, called the High
Temperature Approximation (as only the first perturbation term in a
l/T-expansion is involved) breaks down at low and intermediate densities,
where the superposition of the potentials of the neighbouring molecules will
not lead any more to a homogeneous background potential. But this will not
concern us here. Attention should be called to the fact that the high
temperature approximation corresponds closely to a generalized van der Waals
model, the hard sphere term given by the term coming from the repulsive
interactions, and the term -A/V given by the perturbation term, where the
"constant" A contains a slight density dependence from the pair distribution
function. The question remains how to calculate the free energy of the
assembly interacting by repulsive forces. One possibility is the standard
method according to Weeks, Chandler, and Andersen, and elaborated by Verlet
and Weis (5), by referring back to a hard sphere system. The second
possibility is the explicit calculation on the basis of the softly repulsive
potential. By a method invented by Baxter (6,7) it is very easy and quick
to arrive at a Percus-Yevick solution for the pair distribution function of
an assembly interacting with a potential of finite range. This way the
pressure can be calculated for various densities, and by integration the
free energy. For potentials where the repulsive branch is not much softer
than that of a Lennard-Jones potential, the two methods lead to the same
results. For very softly repulsive potentials, I believe that the Percus-
Yevick method is preferable.

REFERENCE POTENTIALS FOR
NON-CENTRAL INTERACTION

After this brief sketch I would like to proceed to the question how to take
into account anisotropic intermolecular interaction. In the following I will
confine myself to very simple examples,the interaction between linear
molecules, and dipole—dipole interaction. The usual way is to treat the non-
central force assembly by calculating the deviation from the properties of a
suitable reference assembly, where the particles interact with central force
potentials. It has been suggested also to go back to non—central force
reference assemblies (8), but I will not refer to this. The central force
reference assembly is constructed by a suitable angle-averaging procedure of
the angle-dependent interaction potential. Two methods of this angle-
averaging are of particular interest: The first uses as a reference potential
the one coming from an unweighted averaging over the angles (9,10,1 1), the
second performs the angle—averaging over the Boltzmann factor (12).
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Thus, when the anisotropic potential is

(2)

method 1 uses

<c (2a)

while method 2 uses teff' which is given by

-c /kT -c (R. ,w. ,w .)/kT
e eLI. =<e 1J 3 J

WiW. (2b)

The brackets < > are used to denote angle—averaging.

Before going into details, a brief qualitative discussion of the two methods
might be in order. Let me consider the example of hard diatomics (hard
dumbells): it is clear that <c> is that of a hard sphere with the dimension
of the long axis of the dumbell, whereas Ceff is a very softly repulsive
potential (fig.3). This example shows immediately how the <c> is
much more repulsive than the full angle-dependent potential; whereas one
might suspect that ceff overdoes the weighing of the not-so-repulsive
situations.

Fig. 3. Plot of teff/kT vs. separation for a model of hard
dumbells with 1/a = 0.6 (1. .diatomic distance,
a..diameter of one atom). The broken line indicates <c>, which
increases to infinity at the contact distance 1.6 a (After
Ref.4).

This is confirmed by fig.4, which shows the residual free energy of Lennard-
Jones diatomics with an anisotropy corresponding to the nitrogen molecule.
The <c> curve is much too positive, whereas the ceffcurve deviates only at
high densities from the calculations which agree with computer
simulations.

Inspite of the obvious advantage of the ceffreference assembly, which is
much closer to the properties of the non— central force assembly than the
<c>—reference assembly, much more calculations have been carried out on the
<c>-basis, and we will have to refer to this method as well. One should bear
in mind, however, that as a consequence of the big differences between the
properties of the true assembly and the <c>-reference assembly, simple first
order corrections will not be able to account for these differences.

PERTURBATION THEORY

The perturbation method consists of introducing the perturbing term with a
factor of A (A=O, if no perturbation is taking place, and A=1, if the full
perturbation is switched on), and developing the function in question into
a Taylor series with respect to A.

rio
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Fig. 4. The density dependence of the configurational free
energy for Lennard-Jones diatomics with 1/a = 0.33. The full
cUrves are for the <s>- and ff-reference assembly, resp.,
the broken curves give e orientational corrections
dealt with later. The broken curve, for Ceff furnishes
pressures which are close to computer simulation
results (cf.fig.12).

Finally, A is set equal to unity.

Using method 1 for the reference potential, we have

(3)

which leads to the first non—zero correction term of the free energy (second
order in A):

F—F / \2r 2 2 (4= - () J gQ<c>47rr
dr

dr2 dr3

Similarly, the first-order term for the angle-dependent pair correlation
function is

g1
= —

g - fg3)(1,2,3)<EA(1,3) + EA(2,3)>3 dr3 . (5)

Notice that part of the correction for the free energy goes linear with the
particle density p = N/V1 and is always negative. The second part,
proportional to p2 and involving the triplet correlation function, can be
simplified for certain symmetries of the anisotropic part of the potential;
e.g., it is zero for dipole-dipole interaction. The first-order approximation
to 'the angle-dependent pair correlation function consists of one part, which
is almost independent of density (a small density dependence is in g ), and
a second part, which is linear in p and involves the triplet correlaion
function. Again, this second part equals zero for dipole-dipole interaction.
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Method 2 uses

c=ceffkTln[l +Xf} (6)

with
c—cefff = exp(- kT

- 1 . (7)

This leads to the first non—zero correction to the free energy (second
order in X)

= -
1,2,3)<f(1,2)f(2,3)>1,213 d2 d3 (8)

and to the first-order angle-dependent part of the pair correlation
function

g1 = f g +
pfg3)(1,2,3)<f(1,3)+f(2,3)>3

d3 . (9)

The structure of the formula for g1 is quite similar to that derived by
method 1. But the correction term for the free energy contains no part
linear in density. This indicates already that method 2 takes more
characteristic properties into the reference system than method 1.

DIPOLAR LIQUIDS (13)

Here I will confine myself to hard spheres or hard dumbells with
superimposed dipole moment. The potential for the dipole-dipole interaction
is

Cdd = - [2cos cos 02 - sin 01 sin 02 cos(12)]

2

=-D , (10)

where D is an abbreviation for the combination of orientational coordinates.
The angles 01 and 02 are between the dipole axis and the vector r connecting
the molecular centers, the angle indicates how much molecule 2 is
turned out of the plane formed by dipole axis 1 and vector r. Another
important combination of orientational coordinates determines the cosine of
the angle between the dipole axes.

cos 012 = cos 01 cos 02 + sin 01 sin 02 cos = . (11)

The coefficient of the pair correlation function for this combination
determines the deviation of the Kirkwood g—factor (denoted by from
unity:

= 1 +

Jh(r)4rr2dr
. (12)

Let us note some consequences of first-order perturbation theory for dipolar
hard spheres. With the <c>-reference assembly,

<C> =
6HS (13)

2

CD (14)

=0 (15)
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As hD and h are given by -c/kT or _ag/kT the Kirkwood g-factor
cannot deviate from unity. With the effreference assembly, the angle—
averaged pair correlation function g0 is almost identical with g (except
very high dipole moments), but the and f are now for not too big
dipole moments given by

1 2
0.0933 (ILJ+

\r kT/

1 2

\r3kT/

Thus, f is very short ranged and positive. This gives a positive density-
dependence on g, which goes faster than linear with p, as g peaks up in the
short range with increasing density. It should be mentioned that first-
order perturbation theory predicts a behaviour of hD and h different to
computer simulation (14) (fig.5).

Fig. 5. The angular pair correlation functions h and h for
hard sphere dipoles, according to first-order perurbatiAn
(broken curves), and according to linearized hypernetted
chain theory (full curves), which agrees with simulation
results extrapolated for an untruncated potential (14), for
pa3 = 0.8 and p2/(a3kT) = 1.0.

Whether this has to do with the contribution of higher order terms (which
are not separated from the first—order terms in the computer simulation) or
with difficulties in the computer calculations, that is not yet definitely
settled. The same difficulties appear, when a full numerical integration is
used for the calculation of f1. and f, which is necessary for large dipole
moments (fig. 6). Another remark concerns the dependence of the Kirkwood
g-factor on dipole moment at given density. Table 1 compares according to

2
f _ij______

D 3
r kT

= 0.0801

(16)

(17)

21J —.r/o 25

Fig. 6. As fig.5, but for ii2/(a3kT) = 2.75.
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the first—order expansion with results from the linearized hypernetted chain
theory (14). For low dipole moments the first-order perturbation method
gives g-values much nearer to unity. Again, the reason for this disagreement
is hard to trace back.

TABLE 1. The Kirkwood g-factor for po = 0.8 with respect
to the dipole moment for hard sphere dipoles, calculated by
linearized hypernetted chain theory and first-order
perturbation, resp..

2

-fl
L.H.N.C.

St
1 -order pert.

0.00 1.00 1.00
0.25 1.10 1.00
0.5 1.24 1.01
0.667 1.43 1.03
1.0 1.81 1.10

Most interesting is the extension to dipolar hard dumbells on the basic of
the c fc-reference assembly. The hard dumbell c is not appreciably
modife by the superposition of the dipole-dipIe interaction, so g0 can be
taken as that of hard dumbell assemblies (except for very big dipole moments).
Very dramatic is the change in f, which has to be calculated by a numerical
integration procedure. Outside the range of Ceff , that is at distances
r � 1 + a (1 being the diatomic distance, and a the diameter of one
atom), f, is identical with that in case of dipolar hard spheres. But for
distances a � r � 1 + a, f turns to negative values (fig.7). Therefore,
for sufficiently large 1/a and densities where g0 has a pronounced peak in
this short range, will have a negative density dependence. In fig. 8 and
fig. 9, the density dependence for g0 and hL is shown for 1/a = 0.6.

Fig. 7. The coefficient f for ii2/(a3kT) = 1.0, for dipoles
superimposed on hard spheres (broken curve), hard dumbells
with 1/a = 0.2 (dash-dotted curve), and hard dumbells with
1/a = 0.6 (full curve)..

It is clear, that the negative density dependence of becomes much more
pronounced at high densities. Thus, the density dependence of found
experimentally on HC1 and CH3CN (15) (fig.1O), corresponds qualitativly to
the predictions for dipolar hard spheres, and dipolar hard dumbells, resp..
One might visualize this result by "turning on" a dipole moment in a hard
sphere or hard dumbell assembly. In the hard sphere assembly, the dipole
moments will orientate on line, that is in the electrostatically most
favourable orientation. In the hard dumbell assembly, the dipole moments
can get near one another only in less favourable orientations, which are
more or less antiparallel.

r/o
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Fig. 8. Pair correlation function for hard dumbells (1/a =
0.6) interacting with Ceffr for pa = 0.07 (broken curve)
and pa3 = 0.466 (full curve).

\
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Fig. 9. Ti. angular pair correlation function h for hard
dumbells (1/a = 0.6) with dipole moment (2/(a3k) = 1.0),
for pa3 = 0.07 (broken curve) and pa3 = 0.466 (full curve).

c400OC
250

0.2 0.4 0.6 0.8 1.0 gicm3

Fig.10. The density dependence of the Kirkwood g-factor of HC1
(full curve) and CH3CN(15) (broken curve).

SEPARATION OF ORIENTATIONAL PARTITION
FUNCTION AT HIGH DENSITIES

In the perturbation theory, difficulties are met when the perturbation has
to be carried to higher order. Already the first non-zero terms involve in
the general case the triplet correlation function. A noticeable exception is
the treatment of Gubbins et al.(16) for multipole potentials, which uses two
terms in the free energy perturbation expansion and approximates more by use
of a Padé approximant. But in general it is fair to say that perturbation
methods will break down at high densities for large perturbing terms, as,
e.g., in the case of anisotropic shape of the molecules. Here another method
of separating the positional and orientational part of the partition function
has been developed recently. A move was made by Beret and Prausnitz (17),
still carrying empirical features, which was interpreted in the above sense
by the author (18). A much better founded treatment was given lately by
Fischer (19).

The essential idea is as follows:
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In the configurational integral

QI =
exp{- 6(ik1wi1wk)} drl..drN dwl..dwN, (18)

J i<k

let us first split the potential into an angle-independent c5 and an
anisotropic part CA = c-c5:

QI =fex{_ cS(rik)} drl..drN

xfex{_ kTA(rk,w,wk)} dwl..dwN

= r•(:) • (19)

In there will be some configurations contributing strongly to the
integral and many others with almost vanishing contribution. The evaluation
of Q' is only necessary for those configurations contributing signficantly
to ° Q. Let us call one typical important configuration The
essential assumption is now that Q'(rl,..rN) is nearly equal for all the
important configurations.

03

This yields for the configurational integral

= QQ(r,..r) , (20)

where the orientational part is evaluated only for one important
configuration. This configuration is taken as the cubic dense packing. Thus
the configurational integral is split into that of a spherical assembly and
a density-dependent function, which is constructed from the orientational
integral of a face centered cubic lattice.

I will not go into the details of Fischer's evaluation of the orientational
integral, but would like to point out that at the price of some reasonable
additional assumptions the evaluation could be done in an extremely quick
way. It seems to me that this method can beat every other in speed and also
accuracy, if the density is sufficiently high. For lower densities, the
regular lattice is not a good choice for the typical important configuration,
and it is clear, that the orientational contribution will be too small in
that case. As illustration the method has been applied to an assembly of
Lennard—Jones diatomics with potential parameters corresponding to nitrogen.
The result is shown in fig.4 for the free energy along one isotherm. The
orientational correction to the Ceff curve for the free energy furnishes
pressures (fig.11), which are in reasonable agreement to molecular
dynamics results (20,21). Without that correction, a reasonable calculation
of the zero-pressure density (i.e. the density of the liquid under its
vapour pressure) would be impossible. It is of interest that even at the
zero-pressure density most contributions to the orientational integral come
from differences in the attractive part of the potential. Therefore, it is
understandable, that with a worse choice of the spherical reference
potential the orientational correction would be too small, as is demonstrated
on the <c>-reference assembly. It should be noted also that the density
dependence of the correction is very strong, much stronger than with p or p2
as first-order perturbation demands.

Though one should await the extension of this method to molecules of bigger
anisotropy and perhaps also polar molecules, it seems that we have now a
powerful tool in our hands for the region of high densities, where the
application of perturbation methods becomes doubtful.
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Fig. 11. Reduced pressure p = py3/e vs. reduced density
= pa3, for three isotherms T* = kT/* = 1.55, 2.0 and 3.0.

Full curves are on the basis of an c ff-reference assembly
with Fischer's orientational correcton, points are molecular
dynamics results (20,21). After Ref. 19.

CONCLUSION

We are still at the beginning of an insight into the structure and
thermodynamic properties of molecular fluids. I have not mentioned at all
our ignorance about real interaction potentials. It is for this ignorance,
that I have presented properties of model liquids and only vaguely
indicated the bearing on real liquids.

In the statistical-mechanical treatment of molecular fluids the introduction
of the ceffreference potential is, in my opinion, of fundamental importance,
as was the splitting of the potential into a repulsive and attractive
branch according to Weeks, Chandler, and Andersen for central—force liquids.
But it is clear now that even with the e f-reference assembly, thermodynamic
properties and structural features depen strongly on orientational
correction terms. For not too high densities, first-order perturbation is
applicable. For high densities, a new method consisting of a separation of
a strongly density-dependent orientational factor out of the configurational
integral seems to be very promising.
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