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Abstract — It is shown that theoretical derivations of excess thermodynamic functi—
ons and of transport coefficients may be carried out in a self—consistent way.
Examples are given for mean activity and conductance coefficients of dilute solu—
tions of binary symmetrical electrolytes. This allows experimental data to be re—
duced in terms of parameters characterizing the specific short range interactions
in solutions between anions and cations. These parameters represent the energy in—
volved when the solvation cospheres of anions and cations overlap. Whenever possi—
ble check is made through experimental data processing that both techniques lead to
the same quantitative results. An extensive set of results is presented for 1—1
salts in water and alcohols.

INTRODUCTION

Both excess thermodynamic data and conductance coefficients are functions of the ionic con—
centration in solutions. This concentration dependance varies from one electrolyte to an—
other and thus is a function of the different ion—ion interactions so that the experimental
data may be expected to be a source of information concerning these interactions and the in—
fluence of the solvent on these interactions. Indeed since the Debye—Hückel (DH) theory (Ref.
1) was issued many attempts were made in order to explain the values derived for the dis—
tance of closest approach a which controls the DH theory in terms of solvent effects such as
solvation numbers (Ref.2) for instance. The same was true for conductance which is often ana—
lyzed in terms of association constants whithout giving to this concept a clear definition
though. As a result there remains in the mind of the non—specialist a feeling of confusion
still enhanced by the fact that this field is very ctive not only on the experimental but
also theoretical point of view. Each new derivation brings of course a contribution of its
own which is not always clearly underlined, emphasis being made more on apparent contra-
dictions with the former derivations which may seem to be irreducible.

The purpose of the authors would be reached if the readers could be convinced that both
excess thermodynamic quantities and transport coefficients can indeed be treated in a classi-
cal and selfconsistent way as initiated by Debye (Ref.1) and by Onsager (Ref.3); that the
so—called "association" concept due to Bjerrum (Ref.4) can be extracted from the fundamental
bases of this approach without any a—priori "chemical' assumption and that ultimately the
same kind of information can be obtained from analysis of experimental data with the same
reliability that is reached from modern and much more difficult treatments using purely
numerical analysis. This information mainly concerns the specific energy involved when the
solvation. cospheres of the ions overlap. If lithium chloride and cesium iodide differ con-
cerning the concentration dependance of their activity and conductance coefficients in so-
lutions it is partly due to the fact the ionic components have not the same dimensions.
However, it is well known now that these excluded volume effects are not sufficient to ex-
plain these differences. More important is the fact that around each ionic species the sol-
vent molecules present different organizations. This is what is generally denoted as the
Gurney cospheres. What really makes the specificityof each electrolyte is the so—far quanti-
tatively unpredictable energy which is involved when these cospheres overlap i.e. when close
ionic configurations statistically occur. There lies the reason why lithium chloride be—
haves as if it was composed of much larger ions than cesium iodide. In fact one knows that
the cesium and iodide ions do not shrink at washing to use Stokes striking image (Ref.5),
but rather that solvation effects in water are such that short range cesium—iodide ionic con-
figurations are favoured and that the opposite occurs for lithium chloride. The purpose of
this study is to measure these effects quantitatively through use of the conductance techni
que following the road opened by Rasaiah and Friedman who used excess thermodynamic data.

THE CASE OF EQUILIBRIUM

For dilute electrolyte solutions (c<O.1 M) where the McMillan—Mayer scale practically coin-
cides with the Lewis—Randall scale (Ref.6), the compressibility equation (Ref.7) tells us
that from thermodynamical excess data, we can only expect informations concerning the zeroth
moments Gjj of the solute—solute distribution functions gjj
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=
f4Trr2((r)_1)dr (1)

This is clearly shown by the compressibility equation which in the special case of a symme-
trical electrolyte solution reads

dLnf
— —

G + + G__)
(2)

dc
—

i + c4_ + + G)
where ± is the mean activity coefficient of the electrolyte. This relation tells that in
dilute solution one can only expect to obtain quantitative information not on the direct
energy of interactions Ujj themselves but rather on average value of the exponential of

these quantities, mainly

jR r2 exp(— 4- ) dr.

This may seem a disaointingly restrictive fact but it is not surprising though. It is indeed
too ambitious a goal to expect more detailed information on the UJ functions from the ob-
served deviations from the limiting laws for excess quantities.
From eq.(2) the following result can be obtained (Ref.8)

(Lflf± =, Lnf (R,c) + ln'Y+O(c) (3)

= cG (4)

after splitting the integrals of the type of eq.(1) into short range

G. = J 41rr2((r)—1)dr (5)

and long range contributions

G'. = j 47rr2(g(r)—1)dr
(6)

where R is completely arbitrary so far. The quantity f is a long range activity coefficient
obtained from eq. (2) in which only the are used. The dimensionless quantity y is defined

by

Y= s ' (7)
1+cG

Obviously it follows the relation

OyI . (8)
Finally the O(c)function in eq.(3) contains all neglected terms in the derivation of the
system of eqs.(3,4) from eq.(2) that is:
a) all terms deriving from short range anion—anion and cation—cation interactions through

(and G_);
b) also terms in O(c3'2) issued from cross products such as G11 and
c) finally, terms±n O(c3/2) issued from the last integral in the expression

s dG_
dc = Ln -J_____ dc (9)

I+cG_ 1+cG_ 1+cG÷_

which is not explicitly considered in eqs.(3,4).

The analogy between the system of eqs.(3,4) and the Bjerrum equations

1/2

1Ln f = — '1/2 + Ln y (10)

)

I—y 2 U÷_(r)
2 L1 = KA

= j 4vr exp(— kT ) dr (Ii)

ycf÷

is obvious, where U÷_ is any direct anion—cation pair potential. More details concerning this
point will be found in the original publications. Let us jus recall that Bjerrum result is

equivalent to proposing the Debye—Hückel approximation for f±(R,C1) in eq.(3) and conse-
quently the choice for R is then no longer arbitrary and it was found (cf.Ref.16) that
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(z1z2)e2
R=q= 2DkT (12)

was very reasonable. Also Bjerrum considered only the primitive model so that the Bjerrum
"association constant" in eq.(11) reduced to

B 2
KA = a 4rr exp( dr (13)

where a is the distance of closest approach of the hard sphere anion and cation.
Another important step is the identification of eqs(4) and (11) which implies

G_ = yf(R,c) KA (14)

This may be achieved (Ref.9) by choosing a good approximation for the distribution function
g÷_(r)in eq.(5) in the short range region 0<r<R.
One first trial is to use the Meeron distribution function

— +— 2q—r
g÷_(r) —exp(—jy-+--e ) (15)

where U.is the short range part of the direct interaction energy. For the primitive model

= 00 if ra . (16)

For other hamiltonian models specific interaction parameters may be further introduced such

as Rasaiah—Friedman square mound perturbation (Refs.IO&I1). Expanding the Debye screening
factor et in the short range region and truncating after the second term

-Kire — 1—icr (17)
leads ultimately to the following result

LL KA (18)

where LL is the Debye—Htickel limiting law,

±LL = exp(—Kq). (19)

Obviously eq.(18) is a first approximation to the probably more exact result given by eq.
(14). This means that the Meeron distribution function (15) is still too crude an approxi-
mation itself to represent the anion—cation distribution function. It can be shown that the
Meeron distribution function can be obtained from the Poisson—Boltzmann equation

K2e. e.i.
= sh (20)

where iJj is the mean electrical potential at a point of the atmosphere of the reference ion
of charge ei; D the dielectric constant of the medium; T is the Kelvin temperature and k the

Boltzmann constant. Linearizing eq.(20) leads directly to the Debye starting equation

= K2 i4. (21)

A less crude approximation was used by Fuoss and Onsager (Refs.13&14) in the short range
region: it consists in substituting the mean potential in the RHS of eq.(21) by the

direct potential and approximating sh(X>>0) by exp()/2. It comes

2

1

exp() /2. (22)

Inspection of the Fuoss—Onsager result which we shall denote ,j41) shows that it leads to a
first approximation for G which we shall write

= f KA , (23)

a result which is similar to the former result given by eq.(18) which was obtained from the
Meeron distribution function. However, it is now possible to carry the Fuoss—Onsager calcu-
lation further by an iterative process which consists in substituting 41) to the exponen-
tial argument in eq.(22). The result for G_ reads then

G_2 = f KA (lKA & (24)

One sees that the iterative procedure can be carried out undefinitly and that the final
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result will read

GS (n) = 2 K (1—K C (1KAc(. ...+ ±A A
(25)

= Yf f KA when n—°

with

Yf = AC (26)

Obviously y' in eq.(26) and y in eq.(7) coincide at lower concentrations so that eq.(4) then
identifies whith Bjerrurn's eq.(l1) as expected.

It can be shown the concentration range of application of the Bjerrum set of eq.(lO,11) is
limited to

Kqyh/2 0.5

approximately, where K i5 the Debye radius. Beyond that range,higher order short range
clusters such as triplets for instance or anion—anion or cation—cation pairs which are not
taken into account do lead to no longer negligible contributions. This is indeed a drastic
restriction to the use of eqs.(10,11) since except for a few cases in aqueous solutions,
thermodynamic excess quantity cannot be measured with sufficient precision in such a dilute
range. Moreover, in water the Bjerrum equation is no drastic improvement over the original
Debye—Huckel equation; one sees for instance that when the value of q approaches that of a
then the Bjerrum set reduces to the D—H equation

Lnf± =_-i-i (27)

This explains that for a long time the Bjerrum expression was not considered whith enough
attention since it could hardly be significantly tested. In opposition its empirical
character was severely judged mostly, at a time where its fundamental basis was overlooked.
Using the clear and significant vocabulary introduced by Friedman (Ref.15) one can state that
though it was introduced originally as a "chemical model" correction to an "equation model"
derivation (that of Debye and Hückel), the sound bases of the Bjerrum formulation are now
proved since it can be derived from an "hamiltonian model" calculation after a series of well

controUed approximations.

These results must be considered as the generalization toward the complete Bjerrum formulation
of a former analytical expression (Ref.16)

Ln f. = —q + KqKR [i—6( +'()]— KAc
— -(K+K)c + 0(3/12) (28)

which was obtained from the theorem of the second virial coefficient due to Meeron and is
numerically identical with the Meeron (Ref.17) result. The difference is only analytical; the
above formulation has the advantage to make the so—called Bjerrum association constant KA
explicit. The 6 and 6' functions will be found in the original publication (Ref.16). Eq.(28))
constitutes an exact evaluation of the system of eqs.(3,4) up to the linear term included.

LINEAR RESPONSE IN TRANSPORT PROPERTIES: LOW FIELD CONDUCTANCE

On a theoretical point of view the problem of electrolytic conductance is still more compli-
cated since the concentration dependance of the motion of the ions depends not only on the
equilibrium distribution functions but in addition on the perturbation brought by the ex-
ternal electrical field to these distribution functions. Moreover, no simple equation as the
compressibility equation (4) is available which might be used as a very practical starting
point like it was done in the preceding section. However the derivation of a simple set of
equations for conductance similar to eqs.(IO,11) is highly desirable since it is rather
straightforward to make precision measurements in the dilute concentration range where such
a formulation is valid (Kqyh/2<O.5).

In fact, such a system of equations was proposed and used with success formerly (Ref.18&19),
but it needed the a priori assumption that the Bjerrum correction could be grafted on
original conductance equations based on the Debye approximation, i.e. the linearization of
the Poisson—Boltzmann equation. The result was

(A= YAL(R,cy)
R U (29)

L2 = KA
= f 4Trr2exp(— j—) dr (11)

cf± o

where the A (R,cy) function is obtained by using former theoretical derivations A(a,c)
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available and replacing simply a by R and c by cY. Note that eq. (29) proceeds from A(a,c)

functions just as eq.(1O) proceeds from the original Debye—Hückel eq.(27).

However, in spite of the progress observed (Ref.19) by using the set of eqs.(29,li ) this
generalization met some opposition (Ref.20&21) which may be compared to that met originally
by Bjerrum formulation. It was thus felt that it was necessary to proceed to a rederivation
which would lead to a formulation of conductance analogue to eqs.(2—4,i1).

This was made possible (Ref.22) by a reexamination of the basic equation of the Onsager
treatment. Briefly summarized the main lines are the following. The most important point is
the derivation of the perturbation to the distribution functions as a consequee of the
external perturbator X. Once these functions are known both the relaxation fieldX and the
electrophoretic velocity Ael which control the concentration dependence of the molar conduc—
tance can be obtained and the molar conductance is given by

e1
A=A0 (1 +-+ .__) (30)

where A0 is the limiting value of the molar conductance which is an adjustable parameter.
The basic equation for the derivation of gj is the Onsager (Ref.3) continuity equation which
merely states the mass conservation at the level of the two—particle reference space.

c7 g ¶j
÷ VQ g = 0 (31)

where g and v are the distribution function and the mean velocity vector of an ion of
type i located at P when an ion of type j is present at Q.

One obvious property of any two—particle mean quantity is that it tends to the corresponding
one—particle quantity when the restriction imposed during the averaging disappears (that is

for 9, for instance, when the location Q of the ion of type j goes to infinity with respect
to P).
Consequently, the two particle mean velocity vector can be written as

—riP .41P -dP
v.Q = v + w.Q (32)

where is the mean velocity vector of an ion of type i at P (without any restriction for
the averaging) and is the correction whichhas to be brought for the presence of an ion
of type j at Q. Of course, the excess vector goes to as Q goes to infinity. When eq.(32)
is introduced in eq.(31) one important result reached: it states that the perturbation
on the pair distribution function of the form

= y..(r) cos
kT(1+)

where and P are new notations for and which do not depend on location in the case
of homogeneous solutions; '7x is the unit vector in the direction of external field X; and
631 are thelfriction coefficients of the ions i÷the pure solvent which are directly relat
to the limiting conductances; is the vector PQ and 0 is the angle between the vectors PQ
and . Eq.(33) tells us that there is no perturbation for the distribution functions of ions
of same type, a wellknown result. It also shows that the real cause of the perturbation of
ion—pair distribution functions is not so much the external field itself but rather the fact
that ions do not move identically under the excitation of the external field as is the case
when ]4J5, In the case of a binary symmetrical electrolyte eq.(33) can be rewritten as

() = y5(r) cos
lA

(34)

8o that one sees that the theory of the conductance coefficient A/A0 depends on gjj() as ex-
plained above but that gi(r) in turn depends on A/I'0. This important result was called the
"echo effect" by one (Re.22) of the authors and is at the basis of the Bjerrum type refor-
mulation of the conductance equation which we are looking for.

So far in the available theoretical derivations found in the literature, the factor A/A0 in
eq.(34) is always missing, so that all evaluations of the functions g'jj are incorrect as well
the evaluation of the relaxation and electrophoretic termsx/x and Ael/Ao, which shall

be then denoted by g, tX1/X and

The corrections necessary to obtain the correct values are straightforward and read

= (1 + + Ael) (35)
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= 1) (36)

= _.i! i+ - + 1) (37)A fl X A0 0 0

The case of the electrophoretic velocity summarized by eq.(35) is more complicated and
necessary details are to be found in the original publication (Ref.22).

The relaxation field contains a hydrodynamic contribution tXhIX and a non hydrodynamic one
1Xc /X. Since each relaxation field term is a space integral over the direct ion—ion inter-
action weighted by the corresponding ion—pair distribution function, it can be parted into
short—range and long—range contributions just like the functions in eqs.(5,6). Let us
denote and the two contributions obtained prom the non hydrodynamic contribu-
tion. It comes

= +.+.i (38)

Of course the echo effect applies to which can be written also as

= CI + + el (39)

Substitution of eq.(39) in eq.(38) and of the result in eq.(30) leads straightforwardly to
the following result

A
A= yn (1 +-y--+-----+.—) (40)

= _ CI

C h 1

(41)

where ( is an intermediary variable defined by

=
(42)

The analogy between eqs.(40,42) and the equilibrium results given by eqs.(3,4,7) is obvious.
It is wellknown that the relaxation effect tX/X is on the overall a braking effect since
it tends to decrease the velocity of the ions. Consequently LX1/X is negative so thatY here
is a dimensionless number which follows the inequalities given by eq.(8). The identity be-
tween eq.(7) and eq.(42) was proved by Justice and Ebeling (Ref.23) using for the evaluation
of the short range contribution the so—called strong coupling approximation which
transpires from the results obtained at equilibrium. This approximation states that, when the
direct interactiop between two ions of opposite charge is large then only their pair distri-
bution function g is perturbated, not their relative two particle velocity jj so that

4Q — 1' = for r<R (43)iP jQ

Using eq.(43) in the short range region instead of the Onsager equation (31) leads to

= - c G + 0(C312) (44)

where the O(c3'2) contribution is numerically quite small compared to the G_ contribution.
The immediate consequence is the following result for conductance

AyA(Rcy) + 0(c3'2) (45)

2L = KA
= f 4vr2 exp(- ) dr (11)

This gives the evidence that excess conductance and excess equilibrium thermodynamic data
lead to the same information as far as the direct energy of interaction U+— is concerned.



Solvation effects and Gurney cosphere overlaps 1687

EXPERIMENTAL VERIFICATION AND RESULTS

Before proceeding to a systematic analysis of conductance data it is necessary to make, when—
ever possible, a test in order to check that both experimental methods (thermodynamics and
conductance) can in fact be reduced in terms of parameters having the same information con—
tent as can be expected from the above review.

One way to do so is to evaluate from conductance data the apparent distance of closest
approach a' and from this parameter to obtain a calculated value of the activity coefficient
which can then be compared with corresponding observed values. For the few aqueous systems
where this is possible (i.e. for which there exist such thermodynamic data in the adequate
concentration range) the results found (Ref.24) were satisfactory. They concern mainly alkali
salts with monovalent oxoanions. When the thermodynamic data do not exist in low enough con-
centrations another method must be used which consists in comparing directly the reduced
parameters. A convincing example of such procedure will be presented here.

Recently Pitzer et al. (Ref.25) have started with a thorough reanalysis of excess thermo-
dynamic data up to rather high concentrations. They used the following relation:

= — !a d1"2 m1l'2
+ m (f3(O) + 2(1)—2m1"2) + m2 c (46)

c'" I+I.2m1'2

in which 4 is the osmotic coefficient, d the density of the solvent and m the motality;
Kq/ch/2 is the Debye—Htickel limiting law°coefficient; (°), f3(1) and c are the three ad—
justable paiameters which were found sufficient to reduce the original data up to c= 3M
sometimes. Eq.(46) derived by Pitzer is a semi—empirical formula which basically can be ob-
tained by utilizing the Debye—Htickel distribution function in the Rasaiah—Friedman pressure
equation (Ref.7).

The Pitzer equation (46) after conversion of molality m into molarity c and expansion can be
rewritten as

= - cI/2 +Jj.? TI + 8(o) + 8(1)_2ch/2] + 0(c2) (47)

which can now be compared to

= — c" +
KqKR [i_ S() + S'()

—

-} cKAe
2KcI... ! EK++__1e2 +

+ o(c3/2) (48)

which is the transform of eq.(28) through the use of the Gibbs—Duhem equation.[cf.eq.(37)inR'1g

Neglecting the K÷ and K__ contributions which can be but very small due to the high electro-
static repulsion between ions of same signs in the short range region; noting that in water
Kq/ch/2 = 1.178 and that for R=q, cS(q/R) = 1/3 and cS'(q/R) = 1/6, the following identity is
found

KA E -2(2° + - 0.10) (49)

between eq.(47) and eq.(48). The idea is then to compare the evaluation of KA from conduc-
tance with the parameters 8(°) and a(') evaluated by Pitzer.

In fact, due to the semiempirical aspect of eq.(47) and to the very different range of con-
centration used in both techniques, systematic deviations are to be expected which hopefully
can be eliminated by introducing in eq.(49) an arbitrary constant which will be determined
by imposing the identity for KC1 in water. This is convenient since conductance gives KA=o
for this system. It comes, as a substitute to eq.(49) the following equation

K; = —2 (°+'—o.26) (50)

where K now denotes the"association" constant calculated from Pitzer tables.

Table 1 summarizes the numerical comparison obtained.
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TABLE 1. A comparison of association constaits (Kr) calculated by eq.(50) from
Pitzer's coefficients (Ref.25) (°) and 2(1) with those (KA) evaluated from con-
ductance measurements using the Fernandez—Prini (Ref.26) version of the Fuoss—Hsia
(Ref. 27) equation.

Sel (o) f3(1) K KA ref.

RbC1 0.044 0.148 0.14 0.18 a
CsCl 0.030 0.056 0.35 0.37 b
RbBr 0.040 0.153 0.13 0.11 c
CsBr 0.028 0.014 0.44 0.39 d
RbI 0.040 0.133 0.17 0.04 e
CsI 0.024 0.026 0.42 0.28 d

NaNO3 0.007 0.178 0.15 0.21 f
K N03 —0.082 0.049 0.59 0.73 f

RbNO3 -0.079 —0.017 0.71 0.82 f

CsNO3 —0.076 —0.067 0.80 1.00 f

NaBrO3 —0.021 0.191 0.18 0.21 f

K Br03 —0.129 0.257 0.26 0.53 f
K Cl03 —0.096 0.248 0.21 0.59 g

Me4NBr —0.036 —0.201 1.00 1.15 h,j
Et4NBr —0.046 —0.448 1.50 1.1 i,j
Pr4NBr 0.011 —0.826 2.15 1.1 i,j

Bu4NBr —0.056 —0.579 1 .79 0.96 i,j

Me4NI 0.035
• —0.585 1.62 1.45 i,j

Et4NI —0.193 —0.599 2.10 2.47 i,j

Pr4NI —0.284 —0.863 2.80 2.81 i,j

a — R.W.Kunze and R.M.Fuoss, J.Phys.Chem., 66, 930 (1962)
b — E.Renard and J.—C.Justice, J.Solution Chem., 3, 633 (1974)
c — J.—E.Lind,jr. and R.M.Fuoss, J.Phys.Chem., 66, 1727 (1962)
d — K.L.Hsia and R.M.Fuoss, J.Am.Chem.Soc., 90, 3055 (1968)
e — T.L.Fabry and R.M.Fuoss, J.Phys.Chem., 66, 974 (1964)
f — M.—C.Justice, R.Bury and J.—C.Justice, Electrochim.Acta, 16, 687 (1971)
g — R.Bury, M.—C.Justice and J.—C.Justice, J.Chim.Phys., 67, 2045 (1970)
h — M.Quintin and M.—C.Justice, C.R.Acad.Sci.Paris, 261, 1287 (1965)
i — M.—C.Justice and J.—C.Justice, C.R.Acad.Sci.Paris, 262, 608 (1966)
j - D.F.Evans and R.L.Kay, J.Phys.Chem., 70, 366 (1966)

Again one observes a very good agreement which underlines the internal consistency of both
data reducing techniques.

Another verification consists in comparing the conductance results with those of Rasaiah and
Friedman (Refs.10&11) relative to the square potential of the anion—cation Gurney cosphere
overlap obtained from HCN treatment of osmotic coefficient data. This model is defined by the
following relations:

c ii
/ forr<r-'-r =a..

— I 2q 13
U. .(r)/kT — d. ./kT + z.z. — for a..< r<a. .+d (51)ijr 13 13

z.z. - for r'a. .+dijr 13

where zj and Zj are the algebraic charge numbers of the ions, d=2.76 the diameter of a water
molecule and r and r are the Pauling radii of the ions. This verification implies the re-
duction of conductance data in term of the same parameter d+_/kT. This is readily achieved
by a least square adjustment of the apparent distance of closest approach a' from conductance
data and by use of the equivalent model theorem which states that, in dilute solutions, all
hamiltonian models U÷_(r) which lead to the same value for KA in eq.(11) are equivalent, i.e.
lead to the same observations as far as the non hydrodynamic part of the relaxation field
LIXc/X of the conductance coefficient is concerned. The equation of correspondance is

R R

f
r2 exp(i) dr =

J
r2 exp(- + i) dr (52)

a' o

where the left hand side represents the primitive model case characterized by a' and the
right hand side any other equivalent model characterized by 1J—. It follows that once the



exp (—d_/kT)

a

Fig. 1. Values of the specific Gurney—Friedman parameter d_/kT of the following
model

r
-

U_/kT
.c

2q/r + d+_/kT for a<r<a+d

L 2q/r for r>a+d

where a=r++r is the sum of the Pauling ionic radii, d is the diameter of the water
molecule (2.76 ), q the Bjerrum distance e2/2DkT and D the dielectric constant of
the solvent. Full and dotted lines allow the identification of cations and anions
respectively. References concerning the alkali—halides conductance data will be
found in Ref.29. Chlorates and perchlorates data were taken from R.Bury, M.—C.Jus—
tie and J.—J.Justice, J.Chim.Phys., 67, 2045 (1970). Nitrates, bromates and iodates
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apparent distance a' is evaluated the corresponding value of the Rasaiah—Friedman d+_/kT
parameter is obtained through

a+d

—
J r2exp(1)dr

a+d

Jr2exp(2')dr

Details on the adjustment of a' from conductance data will be found elsewhere (Ref.29). For
the few cases where the comparison is possible, that is for most alkali halides in water the

test is again quite satisfying (Refs.28&29).

Another test of self—consistency must be mentioned here. It consists in the great similarity
of results obtained by Ebeling et al. (cf.Ref.29, p.323) from both thermodynamic and conduc—
timetric sources which check with ours. A substantial number of data, for 1—1 salts in
hydroxylic solvents were thus studied. The results are summarized in figures 1 — 7 where the
observed values for d+—/kT are plotted as a function of the sum a of Pauling's radii r+ and
r.
For alkali salts in water one observes a significant correlation between the two quantities
since the bigger the value of a the more negative the value d_/kT as shown in fig.1.

r+ r/A
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data will be found in Ref.24.

This trend continues for tetraalkyl ammonium salts in water as seen on fig.2, since the
corresponding points would just extrapolate on the bottom right part of Fig.1. However, for
a given alkali cation the trend is not observed when the size of the anion increases whereas
it is still observed for tetraalkylainmonium ions. The case of these last salts is interesting
since the same pattern is observed in alcohols as can be seen in figs.(2—4). Moreover, the
longest is the alkyl chain of the alcohol the more negative becomes the d÷—/kT parameter.

r.,. r/A

ig. 2. Values of the parameter d÷—/kT for tetraalkylammonium salts in water and
mthanol. The successive full lines (1,2,.. .n..) identify the cations [CH3(CH2)n44
N ; the dotted lines indicate anions. In the case of the R4NNO3 salts o in water,
the length of the alkylchain R increases by one —CH2— unit from left to right. The
two ç' points in H20 and MeOH refer to [Et(0H)]4N bromide and iodide from left to
right; in MeOH the symbol V' refers to the iodide at 10°C and 25°C which both give
the same results. When three points lie on the same vertical line, the lower refers
to measurements at 10°C, the upper at 45°C; when only two points lie on the same
vertical line, the lower refers to measurements at 10°C, the higher at 25°C;
symbols * V, refer to triisoamylbutylammonjum bromide, iodide and nitrate
respectively. Except for the R4NNO3 salts in water which are data to be published
by Y.Prigent, M.—C.Justice and J.—C.Justice, all other references will be found in
Ref.29.

Also worth mentioning is the fact that d÷_/kT are more negative for 2—propanol than for both
ethanol and n—propanol. Decreasing temperature also tends to give more negative d÷_/kT values
Changing Pr4N4 to (Et0H)N has not such a drastic effect as one might expect as can seen by
inspections of the 7 points in fig.2.

On figures 5 and 6 one sees that changing the hydrogens of the alkyl ends of alcohols for
fluorine keeps the pattern practically unchanged but lifts the values for d÷_/kT up to posi-
tive values.

Fig.7 clearly shows that changing the alcohol radical for the ketone one increases also the
d÷—/kT values though much less but changes the pattern radically as shown by the reverse
trend observed on the ef.ct of anions. Clearly both the nature of alkyl chains and the
hydrogen bonding character of the solvent play different and significant roles. This is one
of the positive aspects of the present data reduction, to visualize with some details and to
evaluate quantitatively these effects. It seems that we can thus reach valuable data whose
interest is not only to enable one to recalculate excess thermodynamic quantities when those
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Fig. 3. cf.caption to fig.2
refers to tetraheptylanimonium iodide conductance data by D.F.Evans and P.Gardam

J.Phys.Chem. 72, 3281 (1968)

are not directly available but still more important to perve as basic quantities for the re-
search of future theoreticians. However this last problem will be a difficult one since
understanding these reduced excess parameters will prove as difficult as understanding the
transfer quantities, both belonging to the field of dense particle systems. It is hoped,
that the derivation of extensive sets of such data will help to develop new ideas of
qualitative nature which in turn will be amenable to quantitative studies.
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r÷ r/A

Fig. 4. cf. caption to fig.3
The vertical sequence of and 0 symbols refer to measurements from —40°C to 100C

by steps of 10 degrees and 25°C, from bottom to top respectively, by R.Wachter,
Dissertation, Univ.of Regensburg 1973. The arrow on the point relative to Pr4NBr in
2—PrOH indicates the only point which does not fit in the general pattern. This is
very probably due to an experimental error. Reference for original data are given
in Ref.29.
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C CH2OH\ \/ \ 3Br /(i

Fig. 5. Effect observed when changing from CH3CH2OH to CF3CH2OH solvents on the
d+_/kT values of R4N+ halides — Source of original conductance dats for ethanol are
given in Ref.29; for trifluoroethanol: D.F.Evans, J.A.Nadas and M.A.Natesich, J.

Phys.Chem., 75, 1708 (1971)
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Fig. 6. Differences on d+—/kT observed in hexafluoro—2—propanol and in 2—propanol.
cf. Ref.29 for data source in 2—PrOH; In hexafluoro—2—propanol data were taken from

M.A.Matesich, J.Knoefel, H.Felman and D.F.Evans, J.Phys.Chem., 77, 366 (1973).
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