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THEORETICAL ASPECTS OF POLYMER MELTING
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Abstract - The Gibbs free energy of partially crystalline
polymers of linear flexible chain molecules is intrinsically
a non-linear function of the crystallinity. Owing to this
fact the partially crystalline state may appear as stable
equilibrium state. The equilibrium melting transition has no
defined order and may be subject to hysteresis effects.
Extended chain crystals are separated from the melt by a
potential wall. That is why the polymer melt tends to
metastable or stable partially crystalline states which can
be attained more easily when the equilibrium crystallization
is taking place.

INTRODUCTION

Homopolymers of linear flexible chain molecules generally melt continuously
over a broad temperature range. The heat capacity as function of the
temperature proceeds in a A-shaped manner (Refs. 1 & 2). In the literature
two controversial explanations are given :

(a) Some people (e.g. Refs. 2-4) suppose that in the ideal case the
equilibrium melting of a polymer is an infinitely sharp phase transition of
the first order as is with low molecular substances. In the ideal case the
partially crystalline state is considered as a non-equilibrium state. The
broadening of the melting range is thought to be due to mixing effects
(impurities, molecular weight distribution, end groups and branches of the
chain molecules), homophase pre-melting, caused by phonon interaction and
crystal defects, the Thomson-Gibbs effect (crystal size distribution) and
non-equilibrium effects.

(b) Other people (e.g. Refs. 5-8) lay stress upon the fact that owing to the
lamellar structure of the partially crystalline state the individual chain
molecule traverses the crystalline as well as the amorphous phase. In this
case the conformational entropy of the chain segments remaining in the
amorphous phase depend on the amount of the crystallized part. Thus the
partially crystalline state is stabilized. Also in the ideal case the melting
process is continuous as is in the case of a second-order order-disorder
transition.

It is evident that the question whether the partially crystalline state can
be or cannot be an equilibrium state and whether the equilibrium melting of
high polymers offlexible chain molecules is a transition of the first or the
second order can only refer to samples the melting curve of which is
reversible below the crystallization temperature (Refs. 9 & 10). In my
opinion this question is still unanswered. In the following some simple
a?guments shall be delivered from the merely phenomenological point of

view.
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THEORETICAL

In the simplest case (in which all deviations from the ideal case
including the surface effects are neglected) we may describe a partlally
crystalline system by Gibbs' fundamental equation

g = g(T,p,a) . ' )

g is the Gibbs free energy of the system per unity of mass, T the temperature
and p the pressure (or pressure tensor). a can be considered as ordering -
parameter in the sense of the Landau theory of second-order transitions or
as internal variable of order in the sense of the thermodynamics of
irreversible processes. Eq. (1) is valid for one—phase as well as for two-
phase systems, irrespective of the system being in an equilibrium or a
non-equilibrium state with regard to a. Of course, the homogeneity of the
system with respect to T and p involves the necessity of thermal and
mechanical equilibrium. In the case of a two-phase system a can be called
the degree of crystallinity.

The equilibrium states of the system which are stable or metastable W1th
respect to the ordering parameter are characterlzed by

3g/da = 0 ; 3%g/alzo0 . ' (@)

The equilibrium condition (2) fixes one of the 1ndependent variables T,p,a
as function of the others, for instance

Goq = Geq(TP) - - (3)

That means that in the equilibrium state a may be eliminated as done in
Ehrenfest's theory of the transition phenomena. For our arguments, however,
it proves advantageous to maintain a as (in this case dependent) varlable
also in the equilibrium.

Like g the entropy of the system
s(T,p,a) = - 3g/3T )

depends on the variables T,p,a. For the specific heat capacity at constant
pressure it follows that

°p =17 (ds/dT)p =T [3s/3T + (a_s/ba)(da/dT)p] . (5)

In the non-equilibrium the independent variables have to be considered as
explicit functions of the time t. Consequently the ratio da/dT is
generally represented by

(da/dT)p = (da/dt)p/(dT/dt)p . o (8)

The heat capacity depends on the ratio of the melting rate to the heating
rate as is frequently found with partially crystalline polymers.

In the following we are only interested in the phenomenon of equilibrium
melting. Therefore we take it for granted that the system is heated up so
slowly that the equilibrium value of the ordering parameter can be balanced
immediately after a change in temperature ( do/dt >> dT/dt 3 Quasi-static
process). The time rate of 3g/da at constant pressure is generally
described by -
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d ,9g 3 g, ,dT 3 ,dg.,da
(F &) b =37 &G + 37 &

This equation entails that the change of the ordering parameter with the .
temperature during a quasi-static process is given by the equation

<aa/dm>§q = - (3%g/3T00)/(3%g/32) = (38/3a)/(3%g/3a") )

In consequence, the equation (5) for the equilibrium heat capacity reads as
follows :

c:‘-’- = T [3s/3T + (3s/3a)2/(3%g/%0°)] . (@)

Moreover we restrict ourselves to a two-phase system as proved, for instance,
for linear polyethylene by electron micrographs (Refs. 11-13). In the case
of a two-phase system the enthalpy h and the entropy s can be split into two
additive parts

h(a) = (1-a)h, + ah, ; s() = (1-ads, + as, 9)

(ha,s a’ enthalpy and entropy of the amorphous phase; hc,s ¢} enthalpy and

entropy of the crystalline phase). Those equations, however, are real linear
relations only if the two phases are independent of each other. If the chain
molecules traverse the crystalline as well as the amorphous phase and if the
entropy of the amorphous phase depends on the amount of the crystalline phase
(Refs. 5-8), the second equation (9) is a non-linear equation in a. By
contrast, the first equation (9) may be considered as a linear relation, at
least in a first approximation (Ref. 14).

I{ h(a) is a linear and s(a) a non-linear function of a, (2) and (9) together
with

g=h-Ts (10)
lead to the conditions

- 3s/a = AB/T ; - 3°8/3° %O (1)

(Ah = h_~h_ > 0) for a stable or metastable equilibrium. The change of the
equilibf‘iuﬁ erystallinity with the temperature is described by

(4o /1), = sb/m2(3%s/302) = 0 . (12)
The equilibrium heat capacity is given by

c;q = T (3s/dT) - (ah/T)2/(3%s/20°) 2 0 . (13)

The equilibrium melting is governed by the dependence of -3s/3x on a, that
means by the microstructure of the partially crystalline texture.
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DISCUSSION

In order to give an idea of the contents of the Egs. (10-13) some examples
are treated in Fig. 1. They neglect the explicit dependence of the enthalpy
and of the entropy on the temperature (see Note a).

A. In case -3s/3a is a constant, i.e. s(a) is a linear function of a, also
g(a) becomes a linear function of a. The minimum values of g(a), that means
the equilibrium states relative to o, are always at a=1 for temperatures
below a certain critical temperature

Tc = Ah/As (14)

(as = sa(O)—sc] and at =0 for temperatures T > T, . Only at T, the

partially crystalline state is an equilibrium state and it is worth mentioning
that this equilibrium state is a neutral one. The equilibrium melting appears
as an ideal first-order tramsition.
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Fig. 1 A-C. Characteristic thermodynamic functions of polymers
in various partially crystalline microstates (schematic
representation) : the change 3s/3(1-a)= -3s/da of the entropy
s with the amorphous part (1-o) and the Gibbs free energy g

as functions of the crystallinity a, g for different
temperatures T. The equilibrium crystallinity agq and the
equilibrium heat capacity C, as functions of theqtemperatureT.
The rows from top to bottom correspond to the examples A-C
mentioned in the text.

Note a. For an explicit analytic representation of -3s/da special molecular
models (Refs. 7 & 15) or a Landau expansion of g(a) (Refs. 16) may
be taken as basis. .



Theoretical aspects of polymer melting 461

B. If -3s/d. is a positive function which increases monotonously with a
{according to Zachmann (Refs. 7 & 15) this phenomenon is to be expected with
surface melting of lamellae which are connected by tie-molecules] g(a) has a
minimum for each temperature T = Ty . That means that for each temperature
T = Ty there exists a partially crystalline equilibrium state. With rising
temperature the minimum moves continuously to a=0 . The equilibrium
crystallinity decreases continuously with rising temperature until it
disappears at

Ty = T,A8 / &i%(-asﬁa) ; T, (15)

(see Note b). If - lim(on-'o)ags/bct2 = 0 (as shown in the second row of Fig. 1)
the equilibrium melting appears as anomalous second-order transition

(2% == at Ty,). If - 1im(a~0)3%s/36°> O the equilibrium melting appears
as normal second-order transition (cgq = finite at Ty).

C. So far as the monotonously rising positive function -3s/d9a has an
inflection point at a' |, aeq(T) traverses an inflection point, too. The heat

capacity cS3(T) has a meximum. The equilibrium melting appears as a more or
less markeg diffuse transition.
e, if the

D. The equilibrium melting resembles a transition of the Onsager 2)
(o4 = 0 .
a

t
slope of -3s/da vanishes at the inflection point o' , i.e. (325
E. If -3s/3a is sigmoid (as shown in the fifth row of Fig. 1) g(a) has two
minima in the temperature range T,; < T < T; . The minima reach the same
level at Ty = Ty . If the system persists in the absolute minimum aeq(‘l‘)
and 8¢ (T) suffer a jump at ’I‘r',[. The equilibrium melting appears as a
trans:.gion of the first order at Ty with a more or less significant two-phase
pre- and post-melting range. Two minima in the free energy mean, however,
that hysteresis effects are pogsible. Since the system has to overcome an
energy barrier on melting at Ty it may stay in the relative (metastable)
minimum during the heating process. The sample may be superheated up to Tg.
Of course, the homologous undercooling effect has a competition in the
nucleation. A (-3s/da)-curve with a minimum and an inflection point with a
negative slope (as in the fifth row of Fig. 1), however with the maximum at
a=0 , was calculated by Zachmann (Refs. 7 & 153 for the surface melting of
lamellae with pendent short loops. In this case we get from Egs. (10-13) a
transition of the first order with two-phase pre-melting, but without
post-melting.

F. According to Zachmann (Refs. 7 & 15) for lamellae with chain ends hanging
around -38/da 1is a function monotonously decreasing with rising a. From
Egs. (10-13) it follows that g(a) has a maximum in the temperature range

Ty < T < Tg . The minimum values of g(a) are always at a=1 or a=0 . At Te
the level of the minimum values becomes equal. That means that all partially
crystalline states are unstable. Consequently extended chain lamellae melt,
in the ideal case, at T, with an infinitely sharp first-order transition
without any pre- or posg-melting. Since at T, a barrier of free energy has
to be overcome extended chain crystals may easily be superheated up to Tg
and the melt may be undercooled down to Tu‘

Note b. In practice Ty may always be equal to T,. Theoretically, however,
it is also possible that Ty #T , for instance in case of mere
surface melting (Ref. 7). In Fig. 1 Ty > T, was only chosen by
reason of an easy drawing.
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A Fig. 1 D-F. Compare Fig. 1 A-C. The rows from top to bottom
correspond to the examples D-F mentioned in the text.

CONCLUSIONS

Actually the effects mentioned in (a) of the introduction will more or less
play a part. In the case of small lamellae mainly the surface effects cannot
be neglected. However, in my opinion there is also a perspicuous indication
that the entropic coupling of the phases is efficient : The superheating
phenomena measured on etched extended chain crystals (Ref. 17) and the fact
that during a crystallization under normal conditions no extended chain
crystals develop.

If the amorphous and the crystalline phase were independent of each other
and the free energy a linear function of a, there would be a neutral
equilibrium at the melting point T, (see the first row of Fig. 1). Owing to
the mobility of the chain molecules there would be no motivation for
superheating phenomena which are due to slow melting. The undercooling would
only be a question of nucleation. The rather slow melting process of the
extended chain crystals [which contrasts with the great mobility in the
melting range of other microstructures (Ref. 12)] requires, on the contrary,
a barrier between the melt and the crystal at Tc (as shown in the sixth row
of Fig. 1). That indicates a free energy which is non-linear in a. On the
other hand the existence of a potential wall between the melt and the
extended chain crystal means that during the equilibrium crystallization
under normal conditions metastable or stable partially crystalline states
will develop which are more easily accessible. The formation of an extended
chain crystal is only possible by a very long annealing at Tc.

Mnother indication of the efficiency of the entropic coupling can be
concluded from the statement that the melting peak in the heat capacity of
crystal lamellae of a defined thickness may be located at higher temperatures
than predicted by the Thomson-Gibbs equation (Ref. 13). This phenomenon
cannot be explained by mixing effects or homophase premelting etc. But this
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statement should be confirmed by additional investigations.

I think that further elucidation regarding the efficiency of the entropic
effects could be gained by investigations of the fluctuation phenomena in
the melting range and in the superheated state in dependence on the
microstructure of the samples. The fluctuations ought to be especially great
in those regions where -3<8/3a% ~ O .

If the entropic coupling of the two phases of a partially crystalline
polymer is accepted as a matter of fact, it can be congluded that the
equilibrium melting of polymers, like the non-equilibrium melting, .de?ends,
to a large extent, on the microstructure of the samples. The equilibrium
melting can appear as transition of the first or the second order or just
as well as a diffuse transition or a transition of the Onsager type.

A non-linear dependence of the free energy on the composition is also given
in mixtures. However, the cause of the non-linearity of the free energy in
mixtures, viz., the concentrations of the components in the melt which change
during the melting process, can be varied at will by manipulations from
outside. That is why it is reasonable to choose the pure substances as
standard systems. The situation is different for a defined polymer. In this
case the cause of the non-linearity, i.e. the flexibility of the chain
molecules, cannot be manipulated from outside. On the contrary, it is an
intrinsic property of the polymer. Therefore I do not think it reasonable

to give preference to one of the possible microstructures, e.g. the extended
chain crystals, as standard. Probably the extended chain crystals below the
melting temperature are in the energetically preferred state. For the
equilibrium melting at constant pressure, however, it is not the energy but
the Gibbs free energy that is decisive. But at higher temperatures the Gibbs
free energy strongly depends on the entropy of the system. With respect to
the Gibbs free energy a partially crystalline state may be the preferred
equilibrium state.
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