Plenary Paper - Ion Exchange and Modification
 ZEOLITE EXCHANGERS - SOME EQUILIBRIUM AND KINETIC ASPECTS

R.M. Barrer
Physical Chemistry Laboratories, Chemistry Department, Imperial College, London SW7, UK

Abstract

Cation exchange in zeolites has equilibrium and kinetic aspects. Equilibrium aspects considered were: evaluation of thermodynamic equilibrium constants from Kielland plots; the modifying role of intraphase exchange equilibria between sub-lattices on overall equilibrium constants and activity ratios; and a statistical thermodynamic treatment for a zeolite providing either a single cation sub-lattice or n sub-lattices. The statistical thermodynamic treatment includes replacements $\mathrm{Na}, \mathrm{Al} \nleftarrow \mathrm{Si}$ or $\mathrm{Ca}, \mathrm{Al} \nleftarrow \mathrm{Na}, \mathrm{Si}$ 。 In the area of kinetics self-diffusivity was reviewed and some generalisations attempted.

INTRODUCTION
Cation exchange in zeolites is a readily controlled reaction, usually occurring easily below $100^{\circ} \mathrm{C}$ and involving simple isomorphous replacements of cations within aluminosilicates. Cation exchange also occurs with felspars and felspathoids, but at higher temperatures because the frameworks are less open and therefore the cations are less mobile. Like any other reaction ion exchange has equilibrium, kinetic and energetic aspects. This account will refer to features of the first two aspects.

EQUILIBRIUM

Isotherms have typical contours, several of which are shown in Fig. $1[1,2,3,4]$. Fig. Id shows a miscibility gap, associated with hysteresis. Hysteresis characterises reversible solid state reactions in which a new phase nucleates on or in a matrix of a parent phase. It is ascribable to positive free energy terms associated with strain due to misfit of germ nuclei in the parent crystal and to interfacial free energy between nuclei and parent matrix. These terms on both forward and reverse reaction paths delay growth of the new phase beyond the true equilibrium between bulk A-rich phase and separate bulk B-rich phase, where A and B are the exchange cations. Within the hysteresis loop some remarkable history-dependent scanning curves and related

Fig. l. Characteristic contours of exchange isotherms in some zeolites. Ordinate is equivalent cation fraction in solution; abscissa is this fraction in solution
(a) Li $\rightleftarrows \mathrm{Na}$ in sodalite hydrate [2].
(b) Li $\nrightarrow \mathrm{Na}$ in cancrinite hydrate [2].
$0,25^{\circ} \mathrm{C} ; \quad 0,85^{\circ} \mathrm{C} ; \quad \mathrm{X} 110^{\circ} \mathrm{C}$ for $\mathrm{Na} \rightarrow \mathrm{Li}$

- $25^{\circ} \mathrm{C} ; \quad \bullet, 85^{\circ} \mathrm{C} ;+, 110^{\circ} \mathrm{C}$ for $\mathrm{Li} \rightarrow \mathrm{Na}$
(c) $\mathrm{Na} \nrightarrow \mathrm{K}$ at $25^{\circ} \mathrm{C}$ in $\mathrm{Na}-\mathrm{P}$ [3].
O, K entering crystals;
A, Na entering.
(d) $\mathrm{Na} \nleftarrow \mathrm{K}$ at $25^{\circ} \mathrm{C}$ in $\mathrm{K}-\mathrm{F}$ [4].
$0, K$ entering crystals;
A, Na entering
effects have been observed $[2,5]$.
In many zeolites cations are distributed between various physically and crystallographically distinct site groups or sub-lattices (these terms are equivalent and will be used interchangeably). Equilibrium intraphase distributions of ions A and B are established between site groups, a property which has al.so been rather extensively studied in non-zeolites $[7,8,9,10,11,12]$. These include spinels (2 sub-lattices) and silicates (eqs. orthopyroxene with 2, garnets with 3 and cummingtonite with 4 sub-lattices). Zeolites are however unusual in that the total of cation sites can exceed the number of cations needed for electrical neutrality so that both cations and cation vacancies are distributed among the sub-lattices. I will return to this aspect after considering Kielland plots.

KIELLAND PIOTS

For the general exchange reaction

$$
Z_{A}{ }^{B_{c}}{ }^{Z_{B}}+Z_{B} A_{s}^{Z_{A}} \nrightarrow Z_{A} B_{s}^{Z_{B}}+Z_{B} A_{c}^{Z_{A}}
$$

Z_{A} and Z_{B} are the charges on the ions A and B and subscripts c and s denote in crystal and in solution respectively. Two important quoti. ents are

$$
\begin{equation*}
K=\frac{\left(a_{c}^{A}\right)^{Z_{B}}\left(a_{s}^{B}\right)^{Z}}{\left(a_{c}^{B}{ }^{Z_{A}}{ }^{Z}\left(a_{s}^{A}\right)^{Z_{B}}\right.} ; \quad K_{c}=\frac{A_{Z}^{Z_{B}}\left(a_{s}^{B}\right)^{Z}}{{ }^{Z}{ }_{Z}{ }^{A}\left(a_{s}^{A}\right)^{Z_{B}}} \tag{I}
\end{equation*}
$$

where the a denote activities and A_{Z} and B_{Z} are equivalent cation fractions of A and B in the zeolite. The ratio $\left(a_{s}^{B}\right)^{Z} /\left(a_{s}^{A}\right)^{Z_{B}}$ in solu-
tion can be measured. The thermodynamic
equilibrium constant is obtained from plots of $\log K_{c}$ vs A_{Z} (Kielland plots). These are sometimes nearly linear but more often are not; they may have maxima or minima or both. Whatever their form $\log \mathrm{K}_{\mathrm{c}}$ may be represented as a polynomial in A_{Z} :

$$
\begin{equation*}
\log K_{c}=C_{0}+2 C_{1} A_{Z}+3 C_{2} A_{Z}^{2}+\ldots \tag{2}
\end{equation*}
$$

where the coefficients C are independent of A_{Z}. Gaines and Thomas [13] showed further that

$$
\begin{equation*}
\log E=\log \left(f_{Z}^{A}\right)^{Z_{B}} /\left(f_{Z}^{B}\right)^{Z}=0.4343\left(Z_{B}-Z_{A}\right)-\log K_{c}+\int_{0}^{1} \log K_{c} d A_{Z}+\Delta \tag{3}
\end{equation*}
$$

where f_{Z}^{A} and f_{Z}^{B} are activity coefficients of A and B in association respectively with anionic framework elements L_{A} and L_{B} carrying Z_{A} and Z_{B} negative charges. Δ is a small term which ${ }^{\mathrm{A}}$ is usually negligible for zeolites [14]. Eqns 1,2 and 3 with $\Delta \sim 0$ lead to

$$
\begin{align*}
& \log E=0.4343\left(Z_{B}-Z_{A}\right)+C_{1}\left(1-2 A_{Z}\right)+C_{2}\left(1-3 A_{Z}^{2}\right)+\ldots \tag{4}\\
& \log K=0.4343\left(Z_{B}-Z_{A}\right)+C_{0}+C_{1}+C_{2}+\ldots \tag{5}
\end{align*}
$$

For linear Kielland plots $\log K=0.4343\left(Z_{B}-Z_{A}\right)+C_{f} C_{1}$ and if $Z_{A}=Z_{B}$ the first term on the r.h.s. of eqn 5 is zero. The standard free energy, $\Delta G^{\ominus}=-\mathrm{RT} \mathcal{I}_{\ell} \mathrm{K}$ and the ${ }_{\ominus}$ standard heat. $\Delta \mathrm{H}^{\ominus}$, and entropy, $\Delta \mathrm{S}^{\ominus}$, are obtained from $\Delta H^{\ominus}=-T{ }^{2}(\Delta G / T) / \partial T$ and $\Delta S^{\Theta}=-\dot{\theta} \Delta G / \partial T$. Accordingly Kielland plots can give useful thermodynamic information。

When the isotherm is strongly selective for one ion the curve of A_{s} vs A_{Z} is very close to the ordinate at one end and the abscissa at the other, and Kielland plots tend to become inaccurate at these extremities. This can introduce error in evaluating K from Kielland plots. A second factor often inadequately tested is isotherm reversibility. Points for forward and reverse exchanges should be shown to lie on the same curve.

CATION EXCHANGERS PROVIDING n SUB-LATTICES

We firstly note, as pointed out by Mueller et al. [10] that "chemical potentials of atoms or ions on non-equivalent lattice sites have no validity because these particles cannot be considered independently variable components". They also pointed out that this fact in no way prevents formulation of intraphase equilibrium constants and standard free energies of exchange of ions A and B between sub-lattices. Several procedures are possible, one of which, due to Mueller, [8] is based on detailed balancing, and is summarised below for a zeolite having n sub-lattices.

If the cations A and B have the same charge the rate of change of concentration of A on sub-lattice i is

$$
\begin{equation*}
\frac{d C_{i}^{A}}{d t}=\sum_{j=1}^{n-1} k_{j i}^{\prime}\left(\phi_{j}^{A} c_{j}^{A}\right)\left(\phi_{i}^{B} C_{i}^{B}\right)-\sum_{j=1}^{n-1} k_{i j}^{\prime}\left(\phi_{i}^{A} C_{i}^{A}\right)\left(\phi_{j}^{B} C_{j}^{B}\right) \tag{6}
\end{equation*}
$$

The C are molar concentrations or number densities (per cm^{3}) of the cations indicated by the superscripts, on site groups indicated by the
subscripts. The k^{\prime} are rate constants in concentration units. The \varnothing may be regarded as the equivalent of activity coefficients in macroscopic systems and allow for deviations from ideal mixing of A and B on the sub-lattices. In energy terms they reflect any variability in the Gibbs free energy of intraphase exchange between sub-lattices other than that attributable to the entropy of mixing.

If A_{i}, B_{i} and A_{i}, B_{j} are equivalent cation fractions of ions A and B on site-groups i and j jespectively, then eqn 6 can be re-written as

$$
\begin{equation*}
\frac{d A_{i}}{d t}=\sum_{j=1}^{n-1} k_{j i}\left(\varnothing_{j}^{A_{j}}\right)\left(\alpha_{i} B_{i}\right)-\sum_{j=1}^{n-1} k_{i j}\left(\not \phi_{i} A_{i}\right)\left(\not \varnothing_{j}^{B_{j}}\right) \tag{7}
\end{equation*}
$$

where $k_{j i}=k_{j i}^{\prime}\left(C_{j}^{A}+C_{j}^{B}\right)$ and $k_{i j}=k_{i j}^{\prime}\left(C_{j}^{A}+C_{j}^{B}\right)$. At equilibrium, when $d A_{i} / d t=0$, the pairs of terms in eqn 7 independently add to zero (principle of microscopic reversibility) and so

$$
\begin{equation*}
K_{j i}=\frac{k_{j i}}{k_{i j}}=\frac{\left(\varnothing_{i}^{A_{i}}\right)\left(\varnothing_{j}^{B_{j}}\right)}{\left(\phi_{j}^{A_{j}}\right)\left(\phi_{i}^{B_{i}}\right)} \tag{8}
\end{equation*}
$$

Eqn 8 can be re-written as

$$
\begin{equation*}
\frac{\left(\phi_{i}^{A} A_{i}\right) a_{s}^{B}}{\left(\phi_{i}^{B_{i}}\right) a_{s}^{A}} / \frac{\left(\phi_{j}^{A} A_{j}\right) a_{s}^{B}}{\left(\phi_{j}^{B_{j}}\right) a_{s}^{A}}=K_{i} / K_{j}=K_{j i} \tag{9}
\end{equation*}
$$

where K_{i} and K_{j} are equilibrium constants for exchange of A and B between ${ }^{\text {a }}$ ambient solution and sites on sub-lattices i and j respectively. a_{S}^{A} and $a B$ are the activities of A and B in solution at equilibrium. ${ }^{\text {Eqn }} 9$ thus leads to the general relation [15] for equilibria between solution and each of n site-groups (i.e. sub-lattices):

$$
\begin{equation*}
\frac{a_{S}^{B}}{a_{S}^{A}}=\frac{a_{Z}^{B}}{a_{Z}^{A}} K=\frac{a_{1}^{B}}{a_{1}^{A}} K_{1}=\ldots=\frac{a_{i}^{B}}{a_{i}^{A}} K_{i}=\ldots .=\frac{a_{n}^{B}}{a_{n}^{A}} K_{n} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}^{B} / a_{i}^{A} \equiv \varnothing_{i}^{B} B_{i} / \varnothing_{i}^{A} A_{i} \tag{11}
\end{equation*}
$$

Eqn 10 contains the overall equilibrium constant, K, and activity ratio $a_{7}^{B} / a_{D_{0}}^{A}$ If X_{i} is the fraction of total cationic charge associated with the ith site group then eqn 10 gives

$$
\begin{equation*}
\left.\frac{a_{Z}^{A}}{\frac{a_{Z}^{B}}{B}\left(K_{1}\right.} \cdots X_{n} X_{n}^{X_{n}}\right)=K\left[\left(\frac{a_{1}^{A}}{a_{1}^{B}}\right)^{X_{1}} \cdots\left(\frac{a_{n}^{A}}{a_{n}}\right)^{X_{n}}\right] \tag{12}
\end{equation*}
$$

Also the overall standard free energy of exchange is the sum of the corresponding exchange reactions on all the sub-lattices and so

$$
\begin{equation*}
\Delta G^{\Theta}=\sum_{i=1}^{n} X_{i} \Delta G_{i}^{\Theta} \tag{13}
\end{equation*}
$$

Thus with $\Delta G^{\Theta}=-{ }_{X}{ }_{X} \ln K$ and $\Delta G_{i}^{\Theta}=-R T \ln K_{i}$, eqns 12 and 13 give

Eqns 14 show how equilibria on sub-lattices influence the overall equilibrium constant and activity ratio. Some general consequences are [16]:
(i) When for simplicity we take $n=2$ with ideal exchange on each site group (\varnothing 's all unity), and if $K_{1}>1$ and $K_{2}<1$, then the $\frac{f}{1}{ }^{1}$ sult tant isotherm of A vs A_{Z} is sigmoid in form even where $K=K_{1}{ }_{1} K_{2} X_{2}=1$. For $\mathrm{n}=1$ and $\widehat{K}=1$ an ideal isotherm would be a straight line of unit slope. Thus the mixture of two ideal component isotherms is non-ideal as regards the overall isotherm.
(ii) Ideal component isotherms can never give miscibility gaps in the overall isotherm.
(iii) Without additional information a given overall isotherm cannot be analysed to give component isotherms because numerous empirical allocations of the K_{i} and X_{i} ($i=1$ to n) of the first of eqns 14 could give the correct ${ }^{1}$.

Much additional information comes, however, from X-ray structural evidence. This gives the number, n, of sub-lattices and the values of $X_{1}, X_{2} \ldots . \quad$ If X-ray or other means could further give the cation fraction of each ion actually present on each sub-lattice as a function of cation composition then Kielland plots for each sub-lattice would give the K_{i} and the ratio $\varnothing \phi_{i}^{A} / \phi_{i}^{B}$. Two numerical examples of applications of eqns 14 follow.
(a) In zeolite $\mathrm{K}-\mathrm{F}, \mathrm{Na}^{+} \overrightarrow{+} \mathrm{Li}^{+}, \mathrm{Na}^{+} \overrightarrow{+} \mathrm{K}^{+}$and $\mathrm{Na}^{+} \overrightarrow{+} \mathrm{Cs}^{+}$were studied [4]. Two site groups were assumed and from the sigmoid $\mathrm{Na}^{+} \rightleftarrows \mathrm{Cs}^{+}$isotherm (Fig. 2) $X_{1} / X_{2}=0.64 / 0.36$ was found. Subsequent X-ray studies [17] showed $\mathrm{K}-\mathrm{F}$ in its $\mathrm{Na}-, \mathrm{K}$ - and Rb -forms to be of edingtonite type with two kinds of channel each bearing cations. Experimental isotherms

Fig. 2. (a) The $\mathrm{Na} \nrightarrow$ Cs isotherm in K-F [4]. O, Cs entering crystals; Δ, Na entering.
(b) Analysis of isotherm in terms of two site groups. Curve 1_{1} isotherm on sites of first kind; curve 2, isotherm on sites of second kind; curve 3, resultant isotherm.
(c) The assumed Kielland plots on sites of first kind (curve 1), second kind (curve 3) and resultant isotherm (curve 2).
were successfully reproduced assuming linear Kielland plots with assigned coefficients G_{1} and G_{1} for each site group，and values of K_{1} and K_{2} 。 Results are exemplified in Fig． 2 for $\mathrm{Na}^{+} \not \mathrm{Cs}^{+}$，while the assigned values for the other two exchanges are given below：

Exchange	$\mathrm{C}_{1} 1$	C_{1}	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$
$\mathrm{Na}^{+} \neq \mathrm{K}^{+}$	-0.33	1.55	4.57	0.374
$\mathrm{Na}^{+} \neq \mathrm{Li}^{+}$	0	1.27	1.11	0.89

（b）（ Fe, Mg ）－olivine（one site group）and（ Fe, Mg ）－orthopyroxene（two site groups）are found as co－existing phases，and the $\mathrm{Fe}^{2}+\mathrm{Mg}^{2+}$ distributions between the two phases and between the two sub－lattices of orthopyroxene have been studied［11，18］．The olivine with one site group plays the role of the aqueous medium．At $900^{\circ} \mathrm{C} \Delta \mathrm{G}^{\ominus} \simeq$ -7.3 kJ mol ${ }^{-1}$ for $\mathrm{Fe}^{2+\overrightarrow{2}} \mathrm{Mg}^{2+}$ between the phases and $\Delta \mathrm{GH}_{2} \simeq-12 . \overline{3} \mathrm{~kJ}$ mol^{-1} for $\mathrm{Fe}^{2+} \not \mathrm{Mg}^{2+}$ between the two sub－lattices of orthopyroxene．

STATISTICAL THERMODYNAMIC DEVELOPMENTS

An adequate theoretical treatment must explain and be able to represent the contours of different isotherm types（Fig．l）and of Kielland plots，and also the existence and extent of miscibility gaps． Progress has been made with the following model and its statistical thermodynamic formulation $[2,19,20]$ 。

Miscibility gaps are manifestations of a tendency sometimes shown for ions of a given kind to cluster and so to nucleate a new phase． The simplest assumption which accounts for this is that if for example two ions A occupied adjacent sites an extra relaxation of the frame－ work and／or cation shift occurs which does not happen when A or B is adjacent to B or to a vacant site $[2,19]$ ．The extra energy change associated with this relaxation is conveniently written as $2 \mathrm{w}_{\mathrm{AA}} / \nu$ where ν is the co－ordination number of a site．It is assumed to be pairwise additive．In systems where $n=1$（one site group only）and where vacancies may occur the above model has been extended to pairwise－ad－ ditive extra relaxation energies $2 w_{A A} / \nu, 2 w_{B B} / \nu$ and $2 w_{A B} / \nu$ for $A A, B B$ and $A B$ pairings，as compared with $O A, O A$ and $O B$ where $A B$ denotes a vac－ ant site［20］These energies，though referred to cation pairings， are thought to be very much functions of misfit in the anionic frame－ works which cause local adjustments．

The model described has been developed for exchangers with a single cation sub－lattice，for ideal exchange on n sub－lattices，and for exchanges involving replacement of Si by Al （e．g．Na，Al $\vec{\leftarrow} \mathrm{Si}$ ； $\mathrm{Ca}, \mathrm{Al} \nmid \mathrm{Na}, \mathrm{Si})$ 。

Single Site Group When，as in sodalite hydrate，only one kind of exchange site is involved and $2 W_{A A} / \nu$ is the only extra relaxation energy，the partition function，P ，for the mixed crystal takes the form

$$
\begin{equation*}
P=\frac{N!}{N_{A}!N_{B}!\left(N-N_{A}-N_{B}\right)!} J_{A}^{N_{A}} J_{B}^{N_{B}} J_{G}^{N_{G}}{ }_{P}^{N_{L}}{ }^{N} P_{\text {int }} \tag{15}
\end{equation*}
$$

where $N=$ total number of sites；N_{A} and N_{B} are the numbers of ions of A and B and N_{G} of guest molecules（water）；${ }^{B} J_{A}, J_{B}$ and J_{G}^{\prime} are partition functions for ${ }^{G}$ individual cations A and B and for ${ }^{B}$ guest molecule． $\left.J_{G}=C\left(N_{G}\right) X_{G}^{J}\right)_{G}$ and contains a configurational part $C\left(N_{G}\right)$ ，but for sim－ plicity ${ }^{G} N_{G}$ is assumed not to change as a result of exchange so that $C\left(N_{G}\right)$ is a constant and need not be evaluated for present purposes．

The partition function for that amount of framework carrying one negative charge is P_{I} and the total anionic charge is $N_{0}=Z_{A} N_{A}+Z_{B} N_{B}{ }^{-}$ P_{L} is assumed constant, and the extra relaxation energy ${ }^{2}{ }_{2}{ }_{A A} / B$ introduces the contribution $P_{\text {int }}$ to the overall partition function, P. With J_{A}, J_{B}, J_{G} and P_{L} independent of composition of the (A,B)-zeolite interest centres on the factorial quotient and P int ${ }^{\circ}$. The Helmholtz free energy is $F=-k T$ ln P. The contribution ${ }^{\text {Int }} F$ from $P_{\text {int }}$ was shown to be

$$
\begin{equation*}
F_{\text {int }}=k T \nu\left\{N_{A} \ln \frac{2\left(1-\theta_{A}\right)}{D_{A A}-2 \theta_{A}}+\frac{N}{2} \ln \frac{D_{A A^{-}}-2 \theta_{A}}{D_{A A}\left(1-2 \theta_{A}\right)}\right\} \tag{16}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
\mathrm{D}_{\mathrm{AA}}=\left[1-4 \theta_{A}\left(1-\theta_{A}\right) \alpha_{A A}\right]^{\frac{1}{2}}+1 \tag{17}\\
\alpha_{A A}=1-\exp -2 w_{A A} / \mathrm{kkT} \\
\theta_{A}=N_{A} / N
\end{array}\right\}
$$

Expressions were obtained for the chemical potentials $\mu_{A L_{A}}$ and $\mu_{B L_{B}}$ for the components of the zeolite considered as a ${ }^{\text {ponent system comprising }} \mathrm{N}_{\mathrm{A}}$ units of AL_{A} plus guest molecules as the first and N_{B} units of BL_{B} with guest molecules as the second. As assumed above the number ${ }^{B}$ of guest molecules per unit is the same for each component. L_{A} and L_{B} are the amounts of anionic framework carrying Z_{A} and Z_{B} negative charges and associated respectively with cations A and A_{B} carrying Z_{A} and Z_{B} positive charges. From the standard chemical potentials the equilibrium constants were obtained for $Z_{A} Z_{B}$ equivalents of exchange as

$$
\begin{equation*}
R T \ln K=z_{A} \mu_{B_{B}}^{\theta}-Z_{B} \mu_{A L_{A}}^{\theta}+z_{B} \mu_{A_{s}}^{\theta}-z_{A} \mu_{B_{s}}^{\theta} \tag{18}
\end{equation*}
$$

and also explicit expressions were found for the activity coefficients. When $Z_{A}=Z_{B}$ these reduce to

$$
\begin{equation*}
\ln f_{A} / f_{B}=\left(\Delta_{A}-\Delta_{A}^{*}\right) / \Delta_{B} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{A}=\frac{1}{k T}\left(\frac{\partial F_{i n t}}{\partial N_{A}}\right)_{B L_{B}} ; \quad \Delta_{B}=\frac{1}{k T}\left(\frac{\partial F_{i n t}}{\partial N_{B}}\right)_{A L_{A}} \tag{20}
\end{equation*}
$$

and Δ_{A}^{*} is the value of Δ_{A} in the standard state. For $A L_{A}$ and $B L_{B}$ the standard states were homoionic A- and homoionic B-zeolite ${ }^{A}$ respectively. Thus by allocating values of $2 \mathrm{w}_{\mathrm{AA}} / \nu, \nu$ and N the isotherms could be calculated. They represented aill the types shown in Fig.l, including isotherms with miscibility gaps for sufficiently large exothermal values of $2 w_{A A} / \nu[19,20]$.

It is of interest that strictly linear Kielland plots are not expected when $F_{\text {int }}$ is given by eqn 16. Linear plots require that despite non-zero intalues of $2 \mathrm{w}_{\mathrm{AA}} / \nu$, the cations should be randomly distributed on the sites. True randomness is not however compatible with non-zero $2 w_{A A} / \nu_{0}$ In the limiting case of linear Kielland plots C_{9} in eqn 2 is givian by [2]

$$
\begin{equation*}
2.303 c_{1}=\frac{-w_{A A}\left(N_{A}+N_{B}\right)}{N \mathrm{kT}} \tag{21}
\end{equation*}
$$

Table 1
Coefficients G_{G} and values of $w_{A A}\left(N_{A}+N_{B}\right) / N \quad[I]$

Exchanger	Exchange	$T^{\circ}{ }^{\circ} \mathrm{C}$	G_{l}	$\mathrm{w}_{\mathrm{AA}}\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) / \mathrm{N}$ $(\mathrm{kJ} / \mathrm{g}$ ion $)$
Chabazite	$\mathrm{Na} \rightarrow \mathrm{Rb}$	84	-1.0	6.8
	$\mathrm{Na} \rightarrow \mathrm{TI}$	45	-0.30	1.8_{4}
	$\mathrm{Na} \rightarrow \mathrm{Ag}$	45	0	0
	$\mathrm{~K} \rightarrow \mathrm{Ag}$	25	-0.44	2.5_{1}
Cancrinite	$\mathrm{Li} \rightarrow \mathrm{Na}$	-68	-1.08	7.1
Faujasite	$\mathrm{Na} \rightarrow \mathrm{Ag}$	25	-0.48	2.7_{6}
	$\mathrm{~K} \rightarrow \mathrm{Ag}$	25	-0.49	2.8_{1}
	$\mathrm{Na} \rightarrow \mathrm{K}$	25	-0.52	2.9_{8}
	$\mathrm{Tl} \rightarrow \mathrm{Ag}$	25	-0.68	3.8_{9}

Fi.g. 3. Exchange isotherms for $Z_{A}=Z_{B}=1, K=1$, and $\eta=N /\left(Z_{A} N_{A}+Z_{B} N_{B}\right)$ =2. For curves $1 \nu=2$, for curves $2 \nu=4$ and for curves 3 $\nu=6 . \quad$ In (a) $\Sigma=\left(w_{A A}-2 w_{A B}+w_{B B}\right) / k T=6.908$, in (b) $\Sigma=4.605$, in (c) $\Sigma=-4.605^{B}$ and in (d) $\Sigma=-9.210$. All isotherms were calculated assuming $\mu_{A_{s}}^{\theta}-\mu_{B_{S}}^{\theta}=0$. Miscibility gaps in (d) are indicated by dashed line [20].
and in several systems where the experimental Kielland plots were approximately linear the coefficients C_{M} and values of $w_{A A}\left(N_{A}+N_{B}\right) / N$ are presented in Table l [1].

For the more complex situation where extra energies $2 w_{A A} / \nu, 2 w_{B B} / \nu$ and $2 \mathrm{w}_{A B} / \nu$ were involved order-disorder theory $[21,22]$ was $A \operatorname{used}$ [20]. Again 1 Or a single site group all the isotherm types of Fig.l could be reproduced and for adequately exothermal $2 w_{A A} / \nu$ or $2 w_{B B} / \nu$ miscibility gaps again appeared (Fig。3). Endothermal $2 W_{\text {WB }} / \nu$ had ${ }^{B}$ a similar effect to exothermal $2 w_{\text {dA }} / \nu$ or $2 w_{B B} / \nu$ in causing like ions to cluster. This tendency was a function of $\Sigma=\left(w_{A A}-2 w_{A B}+w_{B B}\right) / k T$.

Exchanger with n Site Groups. The partition function now takes the form

$$
P=\prod_{i=1}^{n} P_{i}=\prod_{i=1}^{n} \frac{N_{i}!}{N_{A, i}: N_{B, i}!\left(N_{i}-N_{A, i}-N_{B, i}\right)!}{ }^{J_{A, i}}{ }_{A, i}{ }_{J_{B, i}}^{N_{B, i}}{ }_{J_{G, i}}^{N_{G, i}}{ }_{P}{ }^{N}{ }_{O, i}, i
$$

where the P_{i} for the ions A and B on the $i^{\text {th }}$ sub-lattice ($i=1$ to n) has the same form as eqn 15, but P int is for simplicity taken as unity for each sub-lattice (i.e. the ideint case is assumed with the \varnothing of eqn 11 all unity and so $K_{c}{ }_{i}=K_{i}$). From eqn 22 the Helmholtz free energy in the mixed crystal and in the standard states (pure AL_{A} and BL_{B} respectively) were obtained, and hence the overall equilibrium constant. The contributions to $\mathrm{F}_{\mathrm{A} \mathrm{A}_{\mathrm{A}}}$ and $\mathrm{F}_{\mathrm{BL}}^{\mathrm{B}} \mathrm{B}$ from the $i^{\text {th }}$ sub-lattice were all identifiable and are termed $\left(\mathrm{F}_{\mathrm{AL}_{A}}^{\ominus}\right)_{i}$ and $\left.\left(\mathrm{F}_{\mathrm{BL}}^{\mathrm{B}}\right)_{i}\right)_{i}$ per molar unit $\left(\mathrm{AL}_{A}\right)_{i}$ and $\left(B L_{B}\right)_{i}$. From the expressions for $F_{A L_{A}}^{\theta}$ and $F_{B L_{B}}^{\theta}$ per mole of $A L_{A}$ and BL_{B} one finds

$$
\begin{equation*}
\mathrm{F}_{\mathrm{AL}_{\mathrm{A}}}^{\theta}=\sum_{i=1}^{n} \mathrm{x}_{i}\left(\mathrm{~F}_{\mathrm{AL}_{\mathrm{A}}{ }^{\theta}} ; \mathrm{F}_{\mathrm{BL}_{\mathrm{B}}}^{\theta}=\sum_{i=1}^{n} \mathrm{x}_{i}\left(\mathrm{~F}_{\mathrm{BL}_{\mathrm{B}}}^{\theta}\right)_{i}\right. \tag{23}
\end{equation*}
$$

The equilibrium constant, K_{i}, between ions in solution and ions on the $i^{\text {th }}$ sub-lattice for $Z_{A} Z_{B}$ equivalents of exchange, is then Eqns 18,23 and 24 together recover the first of eqns 14 ($K=K_{1} \ldots \ldots$ $\mathrm{K}_{\mathrm{n}}^{\mathrm{X}_{\mathrm{n}}}$ 。.

Particular situations examined included $n=2$, with one site group available to A and B and the second only to B. Isotherms taking $K=1$ (unprimed numbers on curves) and $\mathrm{K}=10$ (primed numbers) are shown in Fig. 4. For curves 1 and $1^{\prime}, 2$ and 2', 3 and 31,4 and 4^{\prime} and 5 and 5 ' the maximum exchanges of B by A were respectively $A_{Z}^{\max }=0.6,0.7$, $0.8,0.9$ and l.0. Isotherms 1^{\prime} and 2^{\prime} have contours resembling those obtained when transition metal ammine ions (ions A) exchange with NH_{4}^{+} (ions B) in mordenite, [23] except that $A_{Z}^{\max }$ was ~ 0.5. The metal ammine ions are thought to be too bulky to enter the side pockets lining the wide channels in mordenite, but NH_{4}^{7} should do so. The evidence is then that at the limit of exchange $\sim 50 \%$ of NH_{4}^{+}still remains in side pockets.

Fig. 4. Exchange isotherms calculated for zeolite with two site groups, 1 and 2 [19]. 1 is available to univalent ions A and B; 2 is available only to B. Isotherms with solid lines have $K=1$; and with dashed lines $K=10$. $N /\left(N_{A}+N_{B}\right)=1$. For values of $A_{C}^{\max }$ see text.

Isomorphous Replacements involving Al and Si. So far ion exchanges within a framework of fixed composition w.r.t. AI and Si have been considered. The model and its treatment are however readily extended to include replacements such as $\mathrm{Na}, \mathrm{Al} \not \overrightarrow{\mathrm{Si}}$ and $\mathrm{Ca}, \mathrm{Al} \nsucceq \mathrm{Na}, \mathrm{Si}$ 。[19] This requires consideration of the partition function for the aluminosilicate framework, $P_{L} N_{0}$ in eqns 15 or 22 , because the framework composition is now changing. For simplicity all tetrahedral positions were regarded as equivalent, although this is not strictly true. When a tetrahedral unit AlO_{4} replaces SiO_{4} the energy of replacement was taken as ${ }^{\varepsilon} \mathrm{AI}^{\circ}$ When two AlO_{4} replace two adjacent SiO_{4} an extra pairwise-additive relaxation energy was assumed to arise. It was $2 \mathrm{w} / \nu=\mathrm{w} / 2$ since for tetrahedral sites the co-ordination number, ν, is 4. This extra energy, from Lowenstein's rule [24], is expected to be endothermic. The framework partition function of eqns 15 or 22 since there are no unoccupied tetrahedral sites, takes the form

$$
\begin{equation*}
P_{L}^{N_{0}}=\frac{N_{\gamma}^{!}}{N_{A I}^{!}!N_{S i}!} \cdot J_{S i}^{N_{S i}}{ }_{J_{A I}}^{N_{A I}} P_{A I}^{i n t} \tag{25}
\end{equation*}
$$

N_{γ} is the total number of tetrahedral sites and $N_{A I}$ and $N_{S i}$ the numbers of AlO_{4} and SiO_{4} tetrahedra on these sites $\left(\mathrm{N}_{\gamma}=\mathrm{N}_{\mathrm{Al}}+\mathrm{N}_{\mathrm{Si}}\right)$. J_{Si} and $J_{A l}$ are partition functions of $\mathrm{an}_{\mathrm{N}} \mathrm{SiO}_{4}$ and an $\mathrm{AlO}_{4}^{\mathrm{A}}$ respectively and $P_{A l}^{\text {int }}$ is the contribution to $P_{L} N_{O}$ and so to the overall partition function, P, arising from the extra relaxation energy $w / 2$. For $F_{A l}^{\text {int }}$ corresponding with Pint it was shown that

$$
\left.\begin{array}{l}
\mathrm{F}_{\mathrm{AI}}^{\text {int }}=2 \mathrm{kT}\left\{2 \mathrm{~N}_{\mathrm{AI}} \ln \frac{2 \mathrm{X}_{\mathrm{Si}}}{\mathrm{D}-2 \mathrm{X}_{\mathrm{AI}}}+\mathrm{N}_{\gamma} \ln \frac{\left(\mathrm{D}-2 \mathrm{X}_{\mathrm{AI}}\right)}{\mathrm{X}_{\mathrm{Si}} \mathrm{D}}\right\} \tag{26}\\
\mathrm{D} \quad=\left\{1-4 \mathrm{X}_{\mathrm{AI}} \mathrm{X}_{\mathrm{Si}} \alpha\right\}^{\frac{1}{2}}+1 \\
\alpha \quad=1-\exp -\mathrm{w} / 2 \mathrm{kT}
\end{array}\right\}
$$

with $F=-k T$ In P as before, the free energy function $f(F)=F / k T N{ }_{\gamma}+t_{2}$
was found and plotted against $X_{A 1}=N_{A l} / N_{\gamma}$ for various values of
adjustable parameters. The term t_{2} Is

$$
\begin{equation*}
t_{2}=\ln \left[J_{S i} J_{G}^{N_{G} / N_{V}}\right] \tag{27}
\end{equation*}
$$

where $J_{G}^{N_{G}}$ is the same as in eqns 15 and 22. Since N_{G} was assumed constant t_{2} was also taken as a constant.

The f unction $f(F)$ contains a linear term $X_{A I} t_{1}$ where

$$
\begin{equation*}
t_{1}=\ln \left[J_{S i} / J_{A I} J_{A}^{I / Z}{ }_{A}\right] \tag{28}
\end{equation*}
$$

for the homoionic A-zeolite. If the cations A behave as 3-dimensional harmonic oscillators and $J_{S i} / J_{A I}=\exp -e_{A I} / \mathrm{kT}$ then for $\omega=10^{13} \mathrm{~s}^{-1}, \mathrm{~T}=$ 300K:

$$
t_{1}=\frac{1.7265}{Z_{A}}-0.401\left(\frac{e_{A}}{Z_{A}}+e_{A I}\right)
$$

where e_{A} is the binding energy of A and $\varepsilon_{A I}$ the energy of replacement of SiO_{4} by AlO_{4}. t_{1} is + ve if $\epsilon_{A^{+}} Z_{A} \epsilon_{A l}<4.306 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and - ve for the reverse inequality. Plots of $f(F)$ VS $X_{A l}$ had the following properties: (i) $f(F)$ tends to have a minimum the position and depth of which depends on the magnitude and sign of t_{1} and the magnitude of w / kT, both taken as adjustable parameters, except that $\mathrm{w} / \mathrm{kT}>0$. For $\mathrm{w} / \mathrm{kT}=10$ and $t_{1}=-5$ and - 10 the minima move nearer to $X_{A l}=0.5$ as t_{1} becomes more negative (Fig. 5a). When $t_{1}=-15$ and $\frac{\mathrm{A}}{\mathrm{w}} / \mathrm{kT}=40$ the curves are V-shaped with deep minima virtually at $X_{A 1}=0.5$. Therefore Al/Si ~ 1.0 and is fixed as found in the felspathoids nepheline, kalsilite and kaliophilite. (Fig. 5b)
(ii) When t_{1} is positive and increasing, with $w / k T=40$, the minima become shallow and move towards $\mathrm{X}_{\mathrm{Al}}=0$ (Fig. 5c). Thus

t_{1}	$=2$	4	6	8	10
X_{Al}	$=0.18$	0.10	0.043	0.017	0.0065
$\mathrm{Si} / \mathrm{Al}$	$=4.56$	9.0	22.3	57.8	152.8

Accordingly a possible criterion for formation of silica-rich zeolites such as ZSM-5 and ZSM-ll is a topology giving a large positive value of t_{1}.
(iii) When for the cation $W_{A A} / k T=0$ the shape of the plot of $f(F)$ vs X_{Al} depends only slightly ${ }^{\mathrm{AA}}$ upon the cation charge Z_{A} (curves 1 and 2 in Fig. 5b).
(iv) When there are enough or more than enough cation sites to reach a theoretical Al end member ($X_{A l}=1$), then $N / N_{V}=r_{c}$ influences the minimum more than the shape of the curve of $f(F) V X_{A l}$ (curves 1 and 3 of Fig. 5b). This influence operates through a terfir $r_{c} \ln r_{c}$ in $f(F)$. (v) A limit to isomorphous replacement in the framework is the smaller of $\mathrm{X}_{\mathrm{Al}}^{\max }=0.5$ (Lowenstein's rule, [24] exemplified in Fig. 5b) or $\mathrm{X}_{\mathrm{Al}}^{\max }=$ $Z_{A} r^{\circ}{ }^{\circ}$ When $Z_{A} r_{c}<0.5$ only part of the curve $f(F)$ vs $X_{A f}$ is realisable as Shown in FiA. ${ }^{\text {c }}$ 6a for $t_{1}=-15$ and $r_{c}=1 / 6$ (curve 1), $1 / 4$ (curve 2) and $1 / 2$ (curve 3), taking $Z_{A}=1$. The tectosilicates then tend to have fixed compositions corresponding with the lowest realisable points on plots of $f(F)$ vs $X_{A l}$ 。
(vi) When t_{j} has small + ve or - ve values, with $w_{A f} / k T=0$ for the cation and $w / k T=40$, rather flat curves of $f(F) \mathrm{vs}_{\mathrm{Al}}$ are obtained

Fig. 5. Plots of $f(F)$
against $X_{A I}$ for $W_{A A} / k T=0$. $\begin{array}{ll}\text { (a) } Z_{A}=1 ; & r \\ \mathrm{w} / \mathrm{kT}=\mathrm{A} & =10 . \\ \text { For curve }=1 ;\end{array}$ $t_{1}=-5$ and for curve 2 $t_{1}=-10$.
(b) $t_{1}=-15 ; \quad \mathrm{w} / \mathrm{kT}=40$;
for curve $1 Z_{A}=1$ and $r_{C}=1$;
for curve $2 \mathrm{Z}_{\mathrm{A}}=2, \mathrm{r}_{\mathrm{c}}=1$;
and for curve $3 Z_{A}=1$ and $r=5$.
(c) $Z_{A}=1 ; \quad r_{c}=1 ; \quad w / k T=40$.

For curve $1, t_{1}=2$; for curve 2, $t_{1}=6$; and for curve $3, t_{1}=10$.
Fig. 6. Plots of $f(F)$ against X_{Al} drawn for $\mathrm{Z}_{\mathrm{A}}=1, \mathrm{w}_{\mathrm{AA}} / \mathrm{kT}=0$ and $\mathrm{w} / \mathrm{kT}=40$ [19].
(a) $t_{1}=-15$. For curve 1 , $r_{c}=1 / 6 ;$ for curve 2, $r_{c}=1 / 4$ and for curve 3, $r_{c}=1 / 2$. (b) For curve $1, t_{1}^{c}=-0.2$ and $r_{c}=1 / 2$; for curve 2, $t_{1}=-1.1$ and $r_{c}=1$ 。
with shallow minima (Figs. 5c and 6b). This suggests that such tectosilicates could, by varying the conditions of synthesis, be prepared with a range of values of $\mathrm{Si} / \mathrm{Al}$ (e.g. chabazite, faujasite, zeolite I).

From the foregoing short account the statistical thermodynamic treatment, with the relatively simple model suggested, is seen able to present a very encouraging range of the properties observed in isomorphous replacement.

SEHF-DIFFUSIVITIES OF IONS IN ZEOLITES

The expressions for ionexchange equilibria of ions A and B between sub-lattices were developed assuming ready mobility of cations. Selfdiffusivities of cations have been measured in analcime, [25] chabazite, [26,27] zeolite A, $[28,29,30,31,32]$, mordenite [33], and zeolites X and Y $[28,29,32,34,35,36]$. Results are summarised in Tables 2, 3 and 4. For most of the diffusivities, D^{*}, which obey the relation $D^{*}=D_{0} \exp$ $-\mathrm{F} /$ RT (Fig. 7 [32]) the activation energies, E , are so large as to indicate that intracrystalline diffusion is the rate-controlling step. For boundary-layer control in the aqueous solution E would be $\sim 16 \mathrm{~kJ}$ mol^{-1}.

In interpreting rates of exchange between traced and untraced ions in crystal and solution the surface area is involved. Two values have been used: smoothed or geometrical areas, G, based on crystal dimensions, or determined by flow methods; and BET areas, A, found by krypton adsorption (or an equivalent sorbate), under conditions where intracrystalline penetration does not occur. It is not clear which of

Fig. 7. Temperature ${ }_{2}{ }^{-1}$)
dependence of $D^{*}\left(\mathrm{~cm}^{-1}\right)$ for Ca and Sr in zeolite A [32].
these areas is most appropriate and unfortunately the adsorption areas A, can greatly exceed the geometrical areas, G. D^{*} varies as (area) ${ }^{-2}$ and the differences between A and G can represent a factor as large as 10^{3} in D^{*}. Since the entropy of activation, ΔS^{+}, is derived from D_{0} (in $D^{*}=D_{0} \exp -\mathrm{F} / \mathrm{RT}$) using the relation

$$
\begin{equation*}
D_{0}=2.72 \frac{\mathrm{kT}}{\mathrm{~h}} \mathrm{~d}^{2} \exp \Delta \mathrm{~S}^{+} / R \tag{30}
\end{equation*}
$$

and since the whole uncertainty in the area to be used is reflected in D_{0}, an uncertainty of 10^{3} represents $\sim 58 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ in ΔS^{+}. This uncertainty is related to estimates of ΔG^{+}, the free energy of activation :

$$
\begin{equation*}
\Delta G^{+}=\Delta H^{+}-T \Delta S^{+}=E-R T-T \Delta S^{+} \tag{31}
\end{equation*}
$$

In these relations k and h are Boltzmann's and Planck's constants and d is the jump distance per unit diffusion process. $\Delta \mathrm{H}^{+}$is the heat of activation.

Despite the above uncertainty, and in addition the restricted ranges in temperature often involved (Tables 2 to 4), comparison of the results indicates the following behaviour:
(i) D tends in a given zeolite to increase as E increases. This is one more instance of the much more precise correlations observed between $\log D$ and E / T for diffusion in elastomers [40]. These correlations signily that in $\Delta G^{+}=\Delta \mathrm{H}^{+}-\mathrm{T} \Delta \mathrm{S}^{+}$where

$$
\begin{equation*}
\Delta \mathrm{G}^{+} / \mathrm{RT}=-\ln \mathrm{D}^{*}+\ln \left[\mathrm{kTd}^{2} / \mathrm{h}\right] \tag{32}
\end{equation*}
$$

the experimentally accessible ranges in $\ln D^{*}$ and hence in ΔG^{+}are less than those in $\Delta \mathrm{H}^{+}$and $T \Delta \mathrm{~S}^{\dagger}$ 。
(ii) In the most compact zeolite, analcime, all forms studied were anhydrous except the Na -form. In analcime E increased with ion radius or polarisability of the monovalent cations [25]. In anhydrous zeolite X E for electrical conductivity also increased with ion radius for $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+} [39].
(iii) When the zeolites are hydrous (A, X, Y, chabazite, mordenite) E is not clearly related to crystallographic radii. Thus E is often less for Ba^{2+} than for Sr^{2+}. This suggests that energy barriers are influenced by the hydration shell. In anhydrous alcohol-anhydrous zeclite exchanges involving X and Y and ions $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+}, E is again a maximum for Sr^{2+}. With ethanol as solvent exchange proceeded more slowly than with methanol [35].
(iv) Cation charge is also important, as indicated by higher E in chabazite [26] for $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$ and Ba^{2+} than for $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$and Cs^{+}.
Table 2 Self-diffusivities in A, X and $Y\left(D^{*}=D_{0} \exp -E / R T ; k_{2}=k_{o} \exp -E_{1} / R T\right.$)

Zeolite	Composition	$\begin{aligned} & D_{0} / m^{2} s^{-1} \\ & \left(k_{0} / s^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{E} / \mathrm{kJ} \mathrm{~mol} \\ & \left(\mathrm{E}_{1} / \mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$		face Area used	and comments	Reference
Na-A	$\mathrm{Na}_{12}\left[\mathrm{Al}_{1} 2 \mathrm{Si}_{12}\right]$	$\begin{aligned} & 10_{5}^{-7.2 \pm 0.5} \\ & \left(10^{-7} \pm 0.6\right) \end{aligned}$	$\begin{gathered} 22.4 \pm 3.0 \\ (42.4 \pm 3.3) \end{gathered}$		$3.4-38.5^{\circ} \mathrm{C}$		28,29
Ca-A	$\sim 90 \%$ exchanged	$4.75 \times 10-8$	67.3 ± 0.8		10-60 ${ }^{\circ} \mathrm{C}$		32
Sr-A	$\sim 90 \%$ exchanged	$7.4 \times 10-5$	81.8 ± 0.8		30-70 ${ }^{\circ} \mathrm{C}$		
Ba-A	"Ba-saturated"	1×10^{-5}	73.6	G;	$45-141^{\circ} \mathrm{C}$		30
$\mathrm{Zn}-\mathrm{A}$		$\begin{aligned} & 10^{-3.97} \pm 0.03 \\ & \left(10^{3.05} \pm 0.25\right) \end{aligned}$	$\begin{gathered} 67.1 \pm 0.5 \\ (56.5 \pm 1.5) \end{gathered}$		25-60 ${ }^{\circ} \mathrm{C}$		31
$\mathrm{Na}-\mathrm{X}$	-	$\begin{aligned} & 10^{-4.1} \pm 0.21 \\ & \left(10^{-65} \pm 0.98\right) \end{aligned}$	$\begin{gathered} 40.5 \pm 0.12 \\ (19.7 \pm 5.4) \end{gathered}$		$1.6-30^{\circ} \mathrm{C}$		28,29
Ca-X	~ 90\% exchanged	1.45×10^{-6}	83.2 ± 1.3		-36 to $-18^{\circ} \mathrm{C}$	$50 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-$	
Sr-X	$\sim 90 \%$ exchanged	1.73×10^{-2}	83.6 ± 1.3	G;	-30 to $0^{\circ} \mathrm{C}$	water mixture	32
Ba-X	> 75\% exchanged	$1.98 x_{3} 10^{-2}$	84.0 ± 1.3	G;	-24 to $0^{\circ} \mathrm{C}$		
Sr-X	Near homoionic Al:Si=85:107	$8 \times 10_{-1}$	127 -		112-142 ${ }^{\circ} \mathrm{C}$		34
Ba-X	Near homoionic Al:Si=85:107	5×10^{-1}	66		38-89 ${ }^{\circ} \mathrm{C}$		
Sr-X	Near homoionic	$\begin{array}{lll} 1 \times 10^{-7} & \text { (fast) } \\ 3 \times 10^{-5} & \text { (slow) } \end{array}$	$\begin{aligned} & 36.8 \text { (fast) } \\ & 79.9 \text { (slow) } \end{aligned}$	G;	$21-120^{\circ} \mathrm{C}$		36
Ba-X	Near homoionic	$\begin{array}{ll}2 \times 10^{-8} & \text { (fast) } \\ 4 \times 10^{-4} & \text { (slow) }\end{array}$	40.6 (fast) 88.2 (slow)		$21-120^{\circ} \mathrm{C}$		
Ni-X	$\mathrm{Na}_{5}{ }_{55} \mathrm{Ni}_{3,9}, 9\left[\mathrm{Al}_{85} \mathrm{Si}_{107}{ }_{7}\right]$	4.7×10^{-6}	86 ± 4		$75-140^{\circ} \mathrm{C}$		37
Co-X		9.1×10^{-6}	89 ± 4	G;	$75-140^{\circ} \mathrm{C}$		
Ce-X	$\mathrm{Na}_{8}{ }_{6} \mathrm{Ce}_{25} \cdot 05\left[\mathrm{Al}_{85} \mathrm{Si}_{1} 07\right.$	- $10-5$	116 ± 6	G;	-28 to $-5{ }^{\text {c }} \mathrm{C}$	11	38
$\mathrm{Ni}-\mathrm{Y}$	$\mathrm{Na}_{1} \cdot 8 \mathrm{Ni}_{32} \cdot 6 \mathrm{Al}_{6} \mathrm{Si}_{1} \mathrm{SH}^{-}$	1.1 $\times 10-7$	100 ± 5	G;	75-140 ${ }^{\circ} \mathrm{C}$		
Co-Y		3.0×10^{-7}	90 ± 5	G;	$75-140^{\circ} \mathrm{C}$		
$\mathrm{Ce}-\mathrm{Y}$			109 ± 5	G;	-28 to $-5{ }^{\text {c }} \mathrm{C}$;	" 1	38
Ni-Y	$\mathrm{Na}_{2} \cdot 2 \mathrm{Ni}_{25} \bullet_{4} \mathrm{Al}_{53} \mathrm{Si}_{13} \mathrm{~S}^{-1}$	$2.9 \times 10-7$	107 ± 5		75-140 ${ }^{\circ} \mathrm{C}$		37
Co-Y	$\mathrm{Na}_{5} \cdot 2 \mathrm{CO}_{23} \cdot 9\left[\mathrm{Al}_{5} \mathrm{Si}_{1} 39\right]$	4.0×10^{-7}	90 ± 5	G;	$75-140^{\circ} \mathrm{C}$		37
$\mathrm{Ce}-\mathrm{Y}$	$\mathrm{Na}_{4} 0_{5} \mathrm{Ceq}_{6} \cdot 0\left[\mathrm{Al}_{5} 5 \mathrm{Si}_{1} 9 \mathrm{~g}\right]$	-	110 ± 6	G;	-28 to $-5^{\circ} \mathrm{C}$	11	38

Table 3. (a) Self diffusivities in zeolites X and Y in absence of water ($D^{*}=D_{0} \exp -E / R T$)

Table 4 Self-diffusivities in analcime, chabazite and mordenite ($D^{*}=D$ exp $-\mathbb{E} / R T$)

Zeolite	Composition	$\mathrm{D}_{0} / \mathrm{m}^{2} \mathrm{~s}^{-1}$	$\mathrm{E} / \mathrm{kJ} \mathrm{mol}^{-1}$	Surface area used and comments	Reference
Na-analcime	Al:Si ~ l:2	2.35×10^{-9}	48.1	A; 0.23-49.9 ${ }^{\circ} \mathrm{C}$	
K-analcime (leucite)	"	2.57×10^{-9}	68.6	$\mathrm{A} ; 25-88^{\circ} \mathrm{C}$	25
Rb-analcime	"	$4.00_{4} \times 10_{-9}^{-11}$	84.0		
$\begin{gathered} \text { Cs-enaleime } \\ \text { (pollucite) } \end{gathered}$	"	$2.0, \times 10^{-9}$	108.7	$\mathrm{A} ; 114-196^{\circ} \mathrm{C}$	
Na -chabazite		1.24×10^{-3}	52.8	$\mathrm{G} ; \sim 13-50^{\circ} \mathrm{C}$	
K-chabazite	$\mathrm{Ca}_{0} 05 \mathrm{~K} \mathrm{~K}_{1} \mathrm{~g}_{2}\left[\mathrm{Al}_{2} \mathrm{Si}_{5} \cdot 15\right]$	3.5, $\times 10^{-6}$	28.4	$\mathrm{G} ; \sim 15-46^{\circ} \mathrm{C}$	27
Na-chabazite		3.95×10^{-11}	27.4 ± 0.5		
K-chabazite	$\mathrm{Ca}_{6} 03 \mathrm{~K}_{0} \mathrm{O}_{1}\left[\mathrm{AlSi}_{5} \cdot 07\right]$	9.4×10^{-11}	29.3 ± 0.6	$\mathrm{A} ; 14.4-54.8{ }^{\circ} \mathrm{C}$	
Rb-chabazite	$\mathrm{Na}_{6} \cdot 15 \mathrm{Rb}_{0} \cdot 82\left[\mathrm{AlSi}_{2} \cdot 34\right.$]	1.73×10^{-10}	28.2 ± 0.5	A; $2.6-44.8{ }^{\circ} \mathrm{C}$	
Cs-chabazite		1.68×10^{-11}	31.6 ± 0.6	A; 0.5-79.8 ${ }^{\circ} \mathrm{C}$	26
Sr-chabazite		$5.51 \times 10_{1}{ }^{-9}$ 1.0 1.010	57.7 ± 1.7 61.0 ± 1.8	A; $25.1-74.8{ }^{\circ} \mathrm{C}$ $\mathrm{A} ; ~ 25.9-77.3{ }^{\circ} \mathrm{C}$	
Ba-chabazite		3.97×10^{-11}	36.9 ± 1.1	$\mathrm{A} ; 30.0-75.4{ }^{\circ} \mathrm{C}$.	
Na -mordenite	$\mathrm{K}_{0}-01 \mathrm{Na}_{5} \cdot 97 \% \mathrm{AlSi}_{5} \cdot 26$]	$4.8, \times 10^{-11}$	36.5	A; $10-.55^{\circ} \mathrm{C}$	
K-mordenite		$2.11 \times 10_{-1}^{-12}$	29.8	A; $41.5-67.5^{\circ} \mathrm{C}$	
Rb -mordenite		8.51×10^{-1}	84.7	A; $22-41.5^{\circ} \mathrm{C}$	
Cs-mordenite	$\mathrm{Na}_{0} \cdot \mathrm{O}_{2} \mathrm{Cssog}_{0} 9 \mathrm{~g}$ [$\mathrm{AlSis}_{5} \cdot 26$]	9.72×10^{-12}	18.0	A; $28.7-97.2^{\circ} \mathrm{C}$	33
Ca-mordenite Sr-mordenite	$\mathrm{Ca}_{0} 036 \mathrm{~K} 0.01$ [AlSis $\left.{ }_{5}{ }^{-36} 6\right]$]	3.65×10^{-14}	43.7	A; $27-93^{\circ} \mathrm{C}$	
Sr-mordenite Ba-mordenite		3.86×10^{-9}	66.8	A; $29.5-75^{\circ} \mathrm{C}{ }^{\circ}$	
Ba-mordenite	$\mathrm{Ba}_{0 \cdot 37} \mathrm{~K}_{0} \cdot 01 \mathrm{Na}_{0} \cdot 26\left[\begin{array}{llll} \\ \mathrm{AlSi}_{5} & 40\end{array}\right]$	9.72×10^{-9}	42.4	A; $18.5-77.5^{\circ} \mathrm{C}$	

Ion valence as well as ion size influences the size of the hydration shell.
(v) The substantial values of E for ionic conductivity in anhydrous zeolite X, [39] despite its very open structure, indicates large changes in electrical potential over distances less than that of a unit ion migration step. These changes are illustrated by calculations of electrical potential inside heulandite [41] and by calculations of electrostatic fields in zeolites A and X [42,43].

For self-diffusion of Na^{+}in zeolites A and $\mathrm{X}[28,29,30]$ and of Zn^{2+} in A [31] the exchange kinetics have been interpreted in terms of two simultaneous processes. Hoinkis and Levi [30] considered that two independent processes occurred in X , respectively via the channel system of 26 -hedra and the channel system of sodalite cages and hexagonal prisms. It is however difficult to see why these processes should not be coupled, and it has instead been proposed that diffusion is linked with a slow reversible ion localisation-delocalisation process [28,29]. Table 2 records the result of each method of analysis, in the latter instance according to the relation

$$
\begin{equation*}
\partial C_{1} / \partial t=\left(D * / r^{2}\right) \partial / \partial r\left(r^{2} \partial C_{1} / \partial r\right)+k_{2}\left(C_{2}-\alpha_{12} C_{1}\right) \tag{33}
\end{equation*}
$$

C_{1} is the concentration of traced mobile ions (in the 26-hedra); C_{2} is that of localised traced ions (e.g. in sodalite cages or (for $\mathrm{Na}-\mathrm{X}$) in hexagonal prisms); r is the crystal radius (treating crystals as spheres all of one size); k_{2} is the rate constant for delocalisation; and $\alpha_{12}=C_{2} / C_{1}$. It has the value 2 for Na-A, with its 8 "bound" and 4 "mobile" Na^{+}per unit cell. Table 2 records this analysis in terms of $D^{*}=D_{0} \exp -E / R T$ and $k_{2}=k \quad \exp -E_{1} / R T$.

The results in Tables 2 to 4 refer to zeolites of fixed composition, usually nearly homoionic. However D^{*} for a given cation may depend on the cationic composition of the zeolite. This aspect has been studied in (K, Na)-mordenite [33] and -chabazite [27]. For chabazite D_{N}^{*} and D_{K}^{*} both varied monotonically with composition but in mordenite these diffusivities appeared to vary in a more complex way. The self-diffusivities are related to the phenomenological coefficients of the irreversible thermodynamic formulation of cation diffusion but so far there is no treatment of the concentration dependence of these coefficients.

CONCLUDING REMARK

In this account I have not tried to cover the extensive experimental material in the literature because any brief account would then necessarily be shallow. Instead certain basic topics have been considered in more depth to show the stage of development, and in the hope of stimulating further work.

REFERENCES

1. R.M. Barrer in "Natural Zeolites, Occurrence, Properties, Use" Editors L.B. Sand and F.A. Mumpton (Pergamon) 1978, p. 385.
2. R.M. Barrer and J.D. Falconer, Proc. Roy. Soc., 1956, A 236, 227.
3. R.M. Barrer and B.M. Munday, J. Chem. Soc. A, 1971, 2909.
4. R.M. Barrer and B.M. Munday, J. Chem. Soc. A, 1971, 2914.
5. R.M. Barrer and L. Hinds, J. Chem. Soc., 1953, 1879.
6. H.B. Callen, S.E. Harrison and C.J. Kriessman, Phys. Rev., 1956, 103, 851.
7. C. Borghese, J. Phys. Chem. Solids, 1967, 28, 2225.
8. R.F. Mueller, J. Phys. Chem. Solids, 1967, 28, 2239.
9. J.E. Grover and P.M. Orville, Geochim. et Cosmochim. Acta, 1969, 33, 205.
10. R.F. Mueller, S. Ghose and S.K. Saxena, Geochim. et Cosmochim. Acta, 1970, 34, 1356.
11. W.J. Walker and K. Rodgers, Geochim. et Cosmochim. Acta, 1974, 38, 1521.
12. J. Grover, Geochim. et Cosmochim. Acta, 1974, 38, 1527.
13. G.L. Gaines and H.C. Thomas, J. Chem. Phys., 1953, 21, 714_{0}
14. R.M. Barrer and J. Klinowski, J. Chem. Soc. Faraday I, 1974, 70, 2080.
15. R.M. Barrer and J. Klinowski, J. Chem. Soc. Faraday I, 1979, 75, 247.
16. R.M. Barrer and J. Klinowski, J. Chem. Soc. Faraday I, 1972, 68, 73. Also ref. 19.
17. E. Tambuyzer and H.J. Bosmans, Acta Cryst., 1976, B32, 1714; and C. Baerlocher and R.M. Barrer, Z. Krist., 1974, 140, 10.
18. L.G. Medaris, Amer. J. Sci., 1969, $267,945$.
19. R.M. Barrer and J. Klinowski, Phil. Trans., 1977, 285, 638.
20. R.M. Barrer and J. Klinowski, Geochim. et Cosmochim. Acta, 1979, 43, 755 .
21. J. Hijmans and J. de Boer, Physica, 1955, 21, 471.
22. C. Domb, Adv. Phys., 1960, 9, 149.
23. R.M. Barrer and R.P. Townsend, J. Chem. Soc. Faraday I, 1976, 72, 661.
24. W. Loewenstein, Amer. Mineralog., 1954, 39, 92.
25. R.M. Barrer and L.V.C. Rees, Trans. Faraday Soc., 1960, 56, 709.
26. R.M. Barrer, R.F. Bartholomew and L.V.C. Rees, J. Phys. Chem。 Solids, 1963, 24, 51.
27. S.C. Duffy and L.V.C. Rees, J. Chem. Soc. Faraday I, 1974, 70, 777.
28. L.M. Brown, H.S. Sherry and F.J. Krambeck, J. Phys. Chem., 1971, 75, 3846。
29. L.M. Brown and H.S. Sherry, J. Phys. Chem., 1971, 75, 3855.
30. E. Hoinkis and H.W. Levi, Z. Naturforsch., 1968, Aट4, 813.
31. V.M. Radak, I.J. Gial and J.S. Salai, J. Chem. Soc. Faraday I, 1976, 72, 1150.
32. A. Dyer and J.M. Fawcett, J. Inorg. Nucl. Chem., 1966, 28, 615.
33. L.V.C. Rees and A. Rao, Trans. Faraday Soc., 1966, 62, 2103.
34. A. Dyer, R.B. Gettins and R.P. Townsend, J. Inorg. Nucl. Chem., 1970, 32, 2395.
35. A. Dyer and R.B. Gettins, J. Inorg. Nucl. Chem., 1970, 32, 2401.
36. E. Hoinkis and H.W. Levi, Soc. Chem. Ind., Conference on Ion Exchange in the Process Industries, London, 1969.
37. A. Dyer and A.B. Ogden, J. Inorg. and Nucl. Chem., 1975, 37,2207•
38. A. Dyer and A.B. Ogden, J. Chromat., 1974, 102, 95.
39. D.C. Freeman and D.N. Stamires, J. Chem. Phys., 1961, 35, 799.
40. R.M. Barrer and H.T. Chio, J. Polymer Sci., Part C, 1965, No.10, 111.
41. D. Bonnin and A.P. Legrand, Chem. Phys. Letters, 1975, 30, 296.
42. E. Dempsey in "Molecular Sieves", Soc. Chem. Ind., London, 1968, p. 293.
43. R.M. Barrer and R.M. Gibbons, Trans. Faraday Soc., 1963, 59, 2569; and 1965, 6l, 948.
