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Abstract - A variational method for calculating the HOMO and

LUMO energies inthe framework of Huckel theory is proposed in

this paper. Graphical technique is employed for the evaluation

of inverse adjacency matrix and collection of Dewar numbers is

selected as a trial vector. Closed formulas for a few homolo-

gous series of conjugated hydrocarbons are deduced, which offer

approximate HOMO (or LUMO) values with an average deviation

less than 0.003. These formulas can be used as "homologous

linearity" functions for rationalizing some of physico-chemical

behaviours of conjugated homologs.

INTRODUCTION

For the purpose of investigating certain observed trends restricted by chemical

behaviours of molecules, a great deal of attention has been focused on the

separation between the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) (1). As well known, the physico-chemical

qualities of conjugated systems in a homologous series show "homologous line-

arity", which can be well-described by defining a function in terms of the

serial number of the homologs concerned (2, 3). Obviously, this function is

closely related to HOMO-LUMO separations. Therefore, it seems worthwhile to

develop a method which would enable one to calculate HOMO and LUMO energies in

terms of simple molecular indices with respect to the homologs considered

without solving the secular equation of Huckel matrix.

Eased onprevious work by G.G.Hall (4) and a Yugoslavian group (5-7), a varia-

tional procedure starting from the evaluation of inverse matrix is outlined

in this paper. The absolute value of HOMO or LUMO energy is calculated via

/ CC! fr
x =±(—-----—1 (1)mm \CBB'C'J

where B = A' representing the inverse of adjacency matrix, C denotes a trial

vector expressed in a row, B' and C' are transpose of B and C respectively.

The entries of B can easily be worked out by means of graphical technique

(8, 9), particularly in cases of alternants, of which the absolute values

are equal to Pauling bond orders (10). The trial vector C is selected as col-

lection of Dewar numbers (11), which can be obtained readily from the diago-

nal set of entries of BB'. Thus, Eq. (1) can be conveniently used for both
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individual molecule and homologs. In the latter case, the "homologous linea-

rity" will be better understood. Moreover, the significance of terminal group

effect (2, 3) is turned out to be obvious.

EVALUATION OF INVERSE ADJACENCY MATRIX

Let the characteristic matrix M be defined as follows

M = xl - A

where A represents adjacency matrix with respect to a molecular graph G, I

stands for unit matrix and x is a variable. As is well known, the secular

equation in Huckel theory can be transformed into a form identical to the

determinant of M. Moreover, it is often necessary to expand the secular equa-

tion in order to obtain the characteristic polynomial for practical use,

namely

PG(x) = det(M) = xn + ... + aNlx + aN (2)

where coefficients aN and aNl play an important role, which can be easily

evaluated by means of current approaches (12).

In order to obtain the entries of inverse adjacency matrix, the previous

result for evaluation of M' can be conveniently reduced to the following

equation by putting x = 0 (12)

(Au).. = aN(G_v)/aN(G)
(3)

= a(G_(ij))/a(G)
where G_v arises when vertex v and its incident edges are deleted simul-

taneously from G, (ij) is used to denote a path k which connects vertices

v and G_(ij) has the same meaning as G_v. Therefore, the inverse

adjacency matrix can be evaluated in terms of aN of molecular graph G and

its sub-graphs according to Eq.(3).

The second formula available for evaluation of A' takes the following form

(12)

(A) = ±
[aN(G_vaNG_v )_aN(G)aN(G_v_v )]2 /aN(G) (4)

which can be simplified further in cases of even alternants as

aN(Gv) = aN(Gv.) = 0 (5)

For benzenoid hydrocarbons, the phase factor in Eq. (4) can be determined since

all terms appearing have the same signs. By using Kekule structures instead

of aN(G) (13), a compact formula for evaluating entries of A' is obtained
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(A) = (-1) +n)/2
K(G_v_v)/K(G) (6)

where n' represents the number of vertices of the longest path between v, and

v. Eq. (6) shows that the entries of inverse adjacency matrix are related to

Pauling bond orders (10). Similarly, one should use ASC(G), the algebraic

count (14), instead of aN(G) in the case of alternant containing 4m-mem-

bered rings, then

(A)ij = ± ASC(G_v_v)/ASC(G) (7)

where the sign is undetermined.

The calculation can be simplified furthermore by distinguishing the vertices

of alternants as star and unstar species, thus A and A' are simultaneously

turned to block forms like

/o B\
A =, ) (8)

where 0 stands for an array of zero entries. This makes the calculation de-

crease to one fourth of the entries.

SELECTION OF THE TRIAL VECTOR

Because matrices A and A are exchangeable, they have a common eigenvector

with eigenvalues reciprocal to each other, namely

AC=xC, AC=xC (9)

where C represents the eigenvector, x and x1 denote eigenvalues. Eq. (9)

states that the maximal eigenvalue of A corresponds to the minimal eigenvalue

of A and vice versa. Therefore, the minimal eigenvalue of A can be obtained

by means of evaluating the maximal eigenvalue of A. Obviously, variation

principle is suitable for solving such a problem, which gives the upper bound

of the exact value. Since the accuracy of the calculated eigenvalue is greatly

dependent on the accuracy of. the trial vector, in order to obtain good number—

ical result, one must find out a well—behaved trial vector.

According to Huckel theory, the molecular orbital coefficient of the i-th

atom satisfies the following equation

c = PGv(X) (10)

Because the minimal eigenvalue is close to zero, therefore Eq. (10) can be

approximated by two terms as

= aN(G_v) + xaNl(G_v) (11)
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This reveals that a set of aNl(G_v), namely Dewar numbers, can be reasonably

selected as the trial vector

C = (aNl(G_vl), aNl(G_v2), ... , a1(Gv)) (12)

for an even alternant. As is well known (11), Dewar number measures the posi-

tion reactivity of conjugated molecule concerned, trial vector (12) is ex-

pected to be well—behaved as one of the zero—order frontier orbitals.

For more efficient calculation, square of the inverse matrix is used instead.

This enables the alternants to have

(BB' 0
A2 = 0 BIB) (13)

with star and unstar components satisfying

(BB') C = x2 C, (B'B) C = x2 C (14)

By means of variation principle, Eq. (1) can be readily derived.

It can be verified by Eq.(7) that aNl(G_v) is proportional to the i-th

diagonal entry of BB', namely

(BB') = aNl(Gv)/aN(G) (15)

Therefore, it is possible to obtain the trial vector directly from the diago-

nal set of BB'. Phase factors of components of the trial vector are determined

by means of maximizing the denominator of Eq. (1) so that the optimized minimal

eigenvalue can be obtained.

CLOSED FORMULAS OF HOMOLOGOUS SERIES

By means of the method presented, not only individual members but also the

whole series can be treated once for all. Closed formulas of HOMO (or LUMO)

energy in terms of topological parameters such as number of carbon atoms or

number of repeated stnicture units are obtained for lots of conjugated homolo-

gous series. Here, a few typical ones are presented for illustration.

Polyene

Although the closed result for this series is well known, yet it seems worth-

while to calculate with the present method for illustration. Let n = 2m re-

presenting the number of carbon atoms involving in the linear chain, then one

can readily write down B and C according to Eqs. (6), (12) and (15), namely

71 —l 1 —l ... ±1

/0 1 —l l...l
B= 0 0 1 -l...±l

0 0 0 0 1

C = (m, —(m—l), (m—2), . .. , l) (16)

Thus, Eq. (1) leads to

/ 5
x =±( (17)mm 22m + 2m+l
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Both of the approximate values obtained from Eq. (17) and the corresponding

accurate ones are tabulated below for comparison

Tale 1. A listing of the HONG energy levels obtained from Eq. (17)

and corresponding accurate values of polyene

n 2 4 6 8 10 12 14 16

Eq. (17) 1.000 0.620 0.447 0.349 0.286 0.243 0.210 0.186
accurate 1.000 0.618 0.445 0.347 0.285 0.241 0.207 0.185

P0 lyacene
Let n represent the number of six—membered rings involved in polyacene. By

repeating the same procedure given above, the formula is worked out which

separates into two parts with respect to n = 2m and n = 2m—l, respectively

r 2520(8m2+6m+l)
x = ±I (n=2m)mm L2697m6+ll088m5+26250m4+318l5m3+l9383m2+6237m+8101

(18)

r 630(8m2+l) i-frx = ± 21 (n=2m—1)mm L2697m6+3297m5+lll3om4+2loom3+3273m2+273m+8lo

In the following, numerical data obtained from Eq. (18) are again tabulated in

comparison with those accurate Huckel values

Table 2. HOMO energy levels of polyacene obtained from Eq. (18)

n 1 2 3 4 5 6 7 8

Eq. (18) 1.000 0.620 0.415 0.296 0.222 0.171 0.137 0.111
accurate 1.000 0.618 0.414 0.295 0.220 0.169 0.137 0.109

Substituted Polyene and Polyphenylene

Two examples of substituted polyene name1y-mono-phenyl-polyene

(C6HS(CH)n1CH2) and -diphenyl-polyene (06H5(CH)nC6HS) are

considered. Their HONG energies take the following forms respectively

r lO(4n3+30n2+7ln+l44)
x (19)

mm Ll6n5+200n4+l000n3+293 5n2+5284n+5760

r 5(32n3+276n2+llo8n+2673)
x = ±4I I (20)mm L256n5+4l6On3l48O+l3462On2+335074n+421O65J

where n=2m represents the number of carbon atoms in the linear chain. Simi-

larly, the formula of HONG energy of polyphenylene may be derived as follows

n1 n(26n2-9n+1)
x.=±2 I (21)mm

L3(5ln3_lO2n2_3n+l2)22n+(l2On2+l6n_8)2n_(36n2+24ñ+4)J

where n represents the number of six—membered rings involved in. Of course,

one knows that there was no closed formula available for anyone of these

three homologs before.
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HOMOLOGOUS LINEARITY

The variation of physico-chemical properties with respect to the number of

repeated units in a homologous series has been well studied with the aid of

the following equation

P = a + bF(n) (22)

where F(n) is a function of n which represents the number of repeated units,

a and b are constants. For the purpose of generalizing the application of

Eq. (22) from polyene to substituted polyerje Chiang (2) keeps F(n)

invariant by shifting the argument n to n+t in order to fit the experimental

results. He calls t as "terminal effect" and has tabulated the t's for a lot

of homologs. Xu and Li (3) intended to interpret it in terms of a modified

model but they still kept the empirical characteristics of Chiang, Since it

seems not so easy to obtain rigorous analytical F(n) other than polyene

Based on the present result of this paper, it seems easier to understand the

meaning of Chiang's result. Now, let xmin given by Eq. (17) be taken as F(m),

then it is found that there exists some value of t, which can make the cal-

culated data from F(m+t) almost coicide with those given by another homologs

concerned. This can be well illustrated by comparing the numerical values

from F(m+0.85) with those from Eq. (19)m as shown below

Table 3. HOMO energy values of-phenyl-polyene obtained from

Eq. (19) and from Eq. (17) by putting m+O.85 instead of m

n 2 4 6 8 10 12

F(m+0.85) 0.658 0.467 0.361 0.294 0.248 0.212

Eq.(l9) 0.664 0.476 0.368 0.299 0.252 0.217

which states that -mono-phenyl-polyere has its terminal eff•ct with

t = 0.85. Similar result holds for other linear cases. Therefore, in Huckel

sense, the "terminal effect" may be readily related to the fact that substi-

tution at the terminal site will cause HOMO-LUMO separation for all members

of the homologous series to be reduced approximately by an equal value.

REFERENCES

1. K.Fukui, Theory of Orientation and Stereoselection, Springer-Verlag,

Berlin (1975).

2. M.C.Chiang, Scientia Sinica, 20, 755 (1977); 21, 207 (1978).

3. G.Xu and L.Li, Scientia Sinica, 23, 574 (1980) and references there in.

4. G.G.Hall, Mol. Phys. 33, 551 (1977).
5. I.Gutman, J.V.Knop and N.Trinajstic, Z. Naturforsch. 29b, 80 (1974).

6. I.Gutman and D.H.Rouvray, Chem. Phys. Lett. 62, 384 (1979).
7. A.Graovac and I.Gutman, Croatica Chem. Acta, 53, 45 (1980).
8. H.Hosoya and K.Hosoi, J. Chem.. Phys. 64, 1065 (1976).
9. A.U.Tang and Y.S.Kiang, Scientia Sinica, 20, 218 (1977)

10. N.S.Ham, J. Chem. Phys. 29, 1229 (1958).
11. M.J.S.Dewar and R.J.Sampson, J. Chem. Soc. 1956, 2789.
12. Y.S.Kiang, mt. J. Quantum Chem. 18, 331 (1980); Ibid S15, 293 (1981)

and references there in.
13. M.J.S. Dewar and H.C.Longuet-Higgins, Proc. Roy. Soc. A2l4, 482 (1952).
14. C.F. Wilcox, J. Amer. Chem. Soc. 91, 2732 (1969).




