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Abstract - A general formulation is given' for the effect of the inter-
mediate state interaction on the second or higher order optical res-
ponse of a system which interacts with its environment in its excited
states. The emission spectrum is expressed in terms of the corre-
lation function of dipole moment between the excited states and the
final state. The projection operator method is conveniently used to
derive a damping-theoretical expression for the spectrum. Dynamic
and stochastic treatments are formulated generally. As an example,
a four-level atom with an Off-diagonal modulation is treated in some
detail. It is emphasized that the intermediate state interaction
has to be treated to keep its dynamical coherence throughout the
whole process. The intuitive picture of intermediate state relaxa-
tion needs caution.

INTRODUCTION

In a second order or a higher order optical process, the system under obser-
vation goes through a series of intermediate states before it reaches the
final state. The interaction of the system with its environment (reservoir)
when it is in the intermediate states is called an intermediate state inter-
action, which we shall abbreviate as IMSI hereafter. We are concerned with
the question how the quantum coherence is affected by IMSI and how it is
manifested in optical responses.
Raman scattering and luminescence are both second order optical processes.
In the former, the quantum coherence is conserved, whereas it is interrupted
in the latter by IMSI. Thus, a simple three-level atom gives only the Raman
scattering if the natural radiative damping is the only mechanism acting in
the excited state. The luminescence component appears if an IMSI perturbs
the phase coherence in the excited state. This was treated first by Huber(l)
by a simple phase modulation model and since then by many authors (2).
The present author and his collaborators (3) have made an extensive study of
various stochastic models for the purpose of understanding the nature of IMSI
in the second order optical processes.
Here we would like to discuss the problem from a somewhat more general point
of view. The point is that the effect of IMSI must be considered as coherent
through the whole of an optical process rather than as a separate process of
relaxation in the excited states. Thus it is not always possible to assign
for these states the relaxation or transition rates independent of the way
how the system is excited and de-excited. A simple example will be treated
by a stochastic model of a four-level system in which the upper two states
are perturbed by a random off-diagonal modulation. For this example, the
second order response is separated into two terms corresponding to the Raman
scattering and the luminescent radiation. It is found, however, that the
rates appearing in the expression are dependent on the parameters character-
izing the optical process such as the off—resonance of the incident and
emitted radiation.

THE MODEL

We consider a system, which we call S hereafter, interacting with radiation
and its environment. The model is introduced by the following assumptions
and definitions:

1. The system has three groups of quantum state, the groind state, the
intermediate (excited) states and the final state. The states and the energy
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levels are denoted by A, B1, B2, .., and C. The system Hamiltonian is denot-
ed by Hq

2. The radiation is treated as semiclassical. The frequency of the incid-
ent light is denoted by w1 and that of the emitted light by w2.

3. The interaction of S with the incident light is denoted by V1.. which
has the dipole matrix elements between A and B's and is proportional to the
electric field of the incident light.

4. The interaction of S with the emitted light is denoted by V2 , which
has the dipole matrix elements between B's and C. The amplitude of the emitt-
ed light is taken as unity.

5. We adopt the resonant approximation and regard V1 and V2 as independent
of time as long as we are concerned with CW cases. If the incident light is
a pulse of a finite duration, V1 (t) represents its envelope function.

6. The system S interacts with the reservoir R only in the intermediate
states. The IMSI is represented by the Hamiltonian H
7. The natural radiation damping is considered seprately from IMSI. It

is represented by a phenomenological damping constant Ybfor the states B's.

Including the energies of annihilated or emitted photons, the energies of the
initial state A, the intermediated states B's and the final state C are de-
noted by a, b1, b2, .. and c respectively. Thus the Hamiltonian of S is
written as

H5 = ala><aI + b.Ib.><b.I + clc>(cI (1)

with
a = A + w1, b = B , and c = C +

When further the IMSI is included, the system has the Harniltonian

HH5+H1 (2)

The Hamiltonian of the composite system S + R is denoted by HSR, namely

HSR = H + HR = H + H1 + HR . (3)

when S is in B's. By the assumption 6, we have

HSRHOHS+HR
when S is in A or C. In the presence of the radiation field, the total system
is governed by the Hamiltonian

Ht0t = 11SR
+ + V2. (5)

We use V as the generator to derive the expression for the probability to
find S 2in the final state by emitting radiation.

GENERAL FORMULATION

The density matrix for the total system evolves in time following the equation

p(t) iH0t p(t) = — i[Ht0t p(t)] (6)

Note that we take the Planck constant as unity. In order to simplify ex-
pressions hereafter, we have introduced the notation (Ref. 4

0Xf = [0, f]

for a hyper—operator o< which constructs a commutator [0, f] with an operand
operator f. Equation (6) is integrated with the initial condition

= la><alp (7)

where is the equilibrium density matrix of the reservoir R satisfying

HRp0 (8)

When Laplace-transformed, Eq. (6) is written as

(s + iH0t) p[s] = p(0) (9)
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where

p [s] =jdt e5t p (t)

We expand p (t) to the second order of V. The second order term is found to
be /t t x x x x

p2 (t) =
5dtI $dtfl e(t_t') (HSR+Vl) (_iV)e(t_t)SR+Vl)

(_iV)e_1tSRl) p (0)
Its matrix element <c 1p(t) c>, when taken the trace over the states of R, is
the probability P(c,t) that the system S, starting from the initial state a
with the reservoir in equilibrium, interacts with incident radiation to arbi-
trary order, goes through the intermediate states and reaches the final state
c emitting a photon w2at time t. This is given by

P(c,t) = TrR<c p(t) c)

=
fdt2Jdt1 TrR <cje_i(t_t2) (HR+V)V e t2-t1) (HR+V)
o

{etlSRl) p(0)}V2Ic

+Jdt2Jdt1 TrR<cje i(tt2) (HR+V){e_(t2_tl) (HR+V)v

etlmSRl) p(0)} V21c> (10)

By tiie assumptions 3 and 6, this is simplified to

P(c,t) =JdtvJdthv TrR<c )V2(t') p(0) V2(t"))c> + c.c. (11)

where

V2(t) = e IsR+Vl)t v2 eSRTl)t
is a Heisenberg operator. Per unit time, the rate of emission (photon count-
ing rate) W(c,t) is

W(c,t) = dP(c,t)/dt

=jdt' TrR<c V2(t) p(O) V2(t'))c>+ c.c. (12)

This is essentially the correlation function of the dipole moment between
B and C which is forced to oscillate by the incident radiation. The above
expression can he written as

W(c,t) = dt' TrR <cV2e (t-t') (HSR+Vi) et' (HSR+Vl) p(0)

et' (HSR+Vl) V2e tt') sR+Vl) c> + c.c.

= cdt' TrR <cV2e
i(tt) (H-c+V1+H)

et'R+)pOv2Jc> + c.c. (13)

by noticing that the rightiest propagator on the first line of the above
equation is simply equal to exp[i(t-t') (c+HR)J because of the assumptions 4
and 6. We introduce the Laplace transforms of P(c,t) and W(c,t) by

P[c,s = e_5tP(c,t)
and

W[c,s] = jät e_5t W(c,t) = s P[c,s]

The CW response is

W(c,) = lim W(c,t) = lim s W[c,s]
t±°° s-0
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1
= urn

TrR <dy2 pV2 Ic> + d.c. (14)
s-'O S+1HR+i (H-c+V1)

where

S

p= urn — p(0) (15)
s-O s + i(HSR +

V1)

represents the dynamical equilibrium of the system when the incident radiation
has been present from the infinite past.
In order to see how Eq. (14) is related to the Raman scattering we expand the
expression (14) to the second order in V1. First, we expand pa,. There is no
contribution to (14) from the zeroth order term. The first order and the
second order terms are

p' = lixn k—
s-0 S + iHSR s + iHSR

= lim ( p(0) iV1) + .., (16)sO s + iHSR

= lim —— - (-iV) ------- (-iV) p (0)
s0 S + 1HSR S + iHSR S + iHSR

= lim
<

1
< V1p(0)}V1s0 S + iHSR s + i(HR + H

+ v1{ p(0)V1}] (17)
s + i(HR + H

where the irrelevant terms are omitted. p has matrix elements <alp1 lb>,
while p2 has elements only between the intermediate states. We expand the
first propagator in Eq. (14) in V1 . The zeroth term combines with p and
the first term with p1 . Thus we obtain

W(c,°°)= lim TrR[<clV2fb>(blJ
1 —

)bi><bilVlla>sO s+1HR+Yb+1 (H-c)

x l (cIV2Ib1)(b11 x bk)<bkfVlIa)P
s+iHR+i (a-c) s+iHR+ Yb+1 (H-a)

+<IV2Ib><bl x b1>(bibI b.b')
s+iHR+ YbUi s+iHSR+2Yb

1
b>b.(Vija)p (alVllbk'>('bIV2(c>

s+1HR+ 1b+1Wa)

+ (clV2fbn)<bnI_-__x1 fb1')(b1b1— IbkI)j>

(bkIVlfa>(b s+iHX+ y +i(H-a) b)<bfV1Ia p Kb V21c> I
R b

(18)
+ c.c.

Here we have introduced the natural radiation damping by the assumption 7 as
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the transverse damping constant 1b and the corresponding longitudinal damping
2y into the propagators for the intermediate states. The asterisk to matrix
elments means the complex conjugates. This is necessary in order to keep
the convention that a hyperoperator operates on operands to the right. In
order to see how the operators work, Eq. (18) is expressed explicitly in
terms of matrix elements. The usual convention is used that every index
appearing twice is summed up.

SIMPLE EXAMPLES

For the simplest standard example of a three-level atom with no IMSI, Eq. (18)
gives

W(c,co) = lim
<cJV2Jb>

1
<bJV1Ia> ____l

s÷0 Yb+1(bc) s+i(a—c)

(aIV1Ib> '<bIV2Ic>
-i(b-a)

+ <cJV2Ib>
1 1 1

(bIV1Ja><'alV1Ib)
yb--1(bc) 2'b

+ (bIV1la><aIV1Ib>
1

}KIV1Jc> + c.c. (19)
1b' (b-a)

The first term gives the Raman response

+ (b-a) (b-c)
WR = 2Tr6(c-a) — ('aIV1Ib> ('bIV2Ic> (20)

y+(b-a) 2j {y+(b-c) 2]

by the real part of the factor [s+i(a-c)]. The imaginary part of this
yields a negative contribution, which is exactly cancelled by the second and
the third terms of (19). Thus the Raman scattering is the only second order
emission if there is no IMSI besides the radiation damping. The incoherent
scattering appears when the incident radiation becomes stronger, starting
from the fourth order of the Rabi frequency (Ref. 5 ). This is a general
matter, not only limited to a three-level system.
An IMSI may change this situation. It may introduce an additional damping
mechanism breaking the balance of the transverse and the longitudinal damp-
ing and thus producing incoherent luminescence-like scattering. The simplest
example is a three-level atom with a random level modulation of the interme-
diate state. Then we may assume that the quantum level of B is adiabatically
modulated by a random frequency shift b' (t), namely

b(t) = b + b' (t) (21)

This problem can be treated generally if b' (t) is assumed as Markovian (2).
In the limit of the socalled motional narrowing, where the rate y =1/ T
of modulation is so fast that the condition m m

21
(b' /'Ym<< 1 (22)

is satisfied, the IMSI gives rise to an additional transverse damping

=<b'2/ (23)

but does not affect the longitudinal damping. In this case the second order
response W(c,oo) is

I<aV1Ib> KbJV2k>12W(c,=) = 27T(a—c) —
2

+ (b—a )2

+ 2 2 - 2 2 <alV1fb> Kb! V2)c1>12 (24)
y +(b-a) y +(b-c)

where



206 R.KUBO

= + 1'

The second term on the right hand side of Eq. (24) consists of two rate
factors, the rate of absorption of w1 to excite the atom from A to B and
the rate of emission of w2 deexciting the atom to C.

A DAMPING THEORETICAL FORMULATION OF IMSI

A general treatment of IMSI can be formulated with the use of the projection
operator method (Ref.6 ) as a damping theory. The basic equation (9) is
formally solved as

p{s] = ( s + i Ht)1 p(0) (25)

We define the projection P of a density operator f by

P f = p TrR f (26)

where p is the normalized equilibrium density matrix of the reservoir R

satisfying the condition (8) and another projection operator Q by

= 1-P
Now the density matrix p is decomposed into two components

p =P p + Q p

Then the resolvent [s + iH0t] 1 in Eq. (25) is decomposed into four com-

ponents. Let us write their general forms for a resolvent [s+iL]:

p (s + iL)1P = [ G + N G11 N']1 (27a)

P (s + iL) = -i[ G0 + N G1lNt] N G11 (27b)

Q (s + iL)p = —i G1 N{ G0 + N G11 Nt]l (27c)

Q (s + iL)1Q = G11
-

G11 Nt[ G0 + N G11 NJ1 N G11 (27d)

where

G0=sP+iPLP, G1=sQ+iQLf (28a)

NPLQ, Nt=QLP (28b)

In terms of this projection, the CW response Eq. (14) is the second order
expansion in V2 of the expression

TrR <c 2[ s + i Ht]1P p(0)}Ic> (29)

Effectively, Eq. (25) is replaced then by

s ÷ i(H + V + V ) + c(s, V1, V2) ] p[s] = p(0) (30)

where

(s, V , V ) = P HX
< Q HXP (31)1 2 I

+ iHR+ HS+ V1+ v2)*iH1Q
I

Thus W(c,co) is given a damping-theoretical expression. If we ignore H in
the denominator of , then the IMSI is treated in the lowest order
perturbation as is often done in deriving relaxation equations. This is a
useful approximation yielding the relaxational evolution of the density sub-
matrix of the intermediate state. It is important to notice here that V, and
V2 are contained in 0 in this approximation. If they are ignored in 0,
this means that the IMSI is treated as a process separate from the whole
process. It is considered as a process of transitions and level shifting of
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the intermediate states per se and then this effect is simply incorporated as
an additional ingredient into the optical process. Then the effective evo-
lution equation will be

s + i(H + V + V) + (0, 0, 0)1 p[s] = p(0) (32)

in the asymptotic limit of 5÷0. This may be called the intermediate-state-
relaxation approximation, which is often intuitively assumed in treating
IMSI. In some cases this may work as an approximation. But, in general, the
approximation is not legitimate, because the presence of V1 and V2 in is
essential in coherent evolution of the whole process.
We can use the projection operator method for the expressions (14) and (18)
avoiding tedious expansion procedures of the propagators in (s, V1, V2).
The expression (14) is a product of two propagators in succession, while (18)
consists of three terms each of which is a product of three propagators.
Physically, this means that the IMSI is working coherently throughout the
whole process of optical scattering from the initial to the final state. The
coherence of interaction becomes unimportant only in the limit of a fast and
weak IMSI satisfying a narrowing condition similar to (22). In general, the
condition may depend on off—resonance parameters and other time constants
characterizing the process in question.

A STOCHASTIC APPROACH

In order to see the points more closely, it is useful to take a stochastic
approach, in which the dynamical evolution of the reservoir R is replaced by
a stochastic one. The states of R are now denoted by r, and the probabili-
ty for finding R in the state r is denoted by pr(t) The stochastic evo-
lution is assumed to follow the Markovian equation,

Pr(t) = — E 1(r,r') Pri(t) (33)
r'

Thus the stochastic operator I' plays the role of iHX in the foregoing
treatment. The IMSI is represented by the interaction Hamiltonian H (r)
acting on S in the intermediate states when R is in the state r. This is a
random interaction as r changes randomly. Then Eq. (6) is replaced by

(t) = —i( H(r)X+ V+ V ) p(t) — rp(t) (34)

with

H(r) = H +

where p(t) is now considered as a vector in the space of the reservoir
states. I' operates on this vector, whereas the hyperoperators operate on
the components of the vector each of which is a density matrix of S. In fact
it has been shown by the present author (7) that the solution of Eq. (34) is
the expectation of the density matrix (t) of S averaged over all possible
paths of r (t) of the reservoir state over the time interval 0 � t'� t with
specified initial state r0 and the final state r.
Corresponding to (26), we introduce the projection,

P = 0) (°I (35)

where 0) is the equilibrium state of R given by the column vector

p

which satisfies the equation

I' 10) = 0
(36)

and
(01 = (1, 1

is its dual vector satisfying

(ojr = 0 and (010) = E p = 1 (37)
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Then we have the basic fürm corresponding to (29)

<'cI{(O( 2 [s + r+ iH(r + V+ V>< ] a>(ajo)}tc> (38)

since (0E' (0 and t'IO) = 0). When this form is expanded in V2 to the
second order, we obtain an expression which corresponds to (14). If it is
expanded further to the second order of V1, we obtain the second order CW
response corresponding to (19). This is given by

W(c,oo) = lim
(0I(cIV2Ib>(bI

1
b.)(b.IV1la>

1

s±0 (H_c) s+I' +i(a—c)

x <cV2b(b
F+yb+i(H_a)

lbk>(bklVlta>I0)

+(oI<'cV2Ib)<bI
1

b]>bibI
I

s+ F+yb+i(H_c) s+r 2b
1>KllI>l KaIVllbk>KbJV2Ic>

(c(V2Ib>I b1><b1b11 Ibkbj

x<bkIVlIa>b.
s+F +yb+i(H-a)

b>bIV11ab V2Ic 0)

+ c.c. (39)

Therefore a stochastic model works as a substitute of a dynamical model by
simplifying the dynamics by a stochastic model and thus makes a nonperturba-
tive calculation feasible. It can be used for modeling a specific physical
system. Our aim here is rather to obtain an insight to some general features
of the general problem.

A FOUR-LEVEL ATOM WITH OFF-DIAGONAL PANDOM MODULATION

In order to illustrate the general consideration, let us consider a simple
four-level model assuming the initial state A, the intermediate states B1 and
B2, and the final state C as the system S. A and B1 are connected by the
interaction V11 and B2 and C by V2 (see Fig. 1). The IMSI from the reservoir
gives rise to an off-diagonal interaction 2 between B1 and B2 and produces
a connection between A and C. This model is particularly interesting because
the IMSI plays an essential role for the higher order optical processes.
Thus we assume

Co
H1 = (40)

0

as the INSI Hamiltonian for the states B1 and B2. For H(r) in Eq. (35) we
have

a 000
0 b1S2 0H() 0 ç b2

(41)

We introduce another great simplification by assuming 0 to jump between two
values +A and -I randomly with the average jumping rate y = 1/ T
Correspondingly the reservoir states are only the set of +lmand _1•m This is
called a two-state jump model. For r in Eq. (33), we assume the simplest
form

1/2 —1/2
= (42)

—1/2 1/2
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Fig. 1. A four-level atom with off-diagonal modulation.

1/2
0) =

1/2
and (01

= (1, 1).

Other eigenvectors are

1/2
1) =

-1/2

which satisfy

F 1) =
1m Ii),

and (ii = (1, —1).

(1 .1' = 1m01
The projection P, Eq. (35),is now

= lo)(oI = 1/2 1/2

1/2 1/2

1/2 —1/2
Q = 1 — P = 1) (lI =

—1/2 1/2

The expre-S.ion (39) can be calculated for this model with the use of Eqs. (27)
and (28) for the propagators appearing in the expression. These are much
simplified because of the two-state jump model assumed here. We have

01
(OlH1ll)

= (l1I1I0) = A 10

wwr

and so we have

(0IHIl) = (lIHI0)= A

0 0 1—1

0 0 —l 1
1—1 0 0

—l 1 0 0

(43)

(44)
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because

(of0J0)= (lIfl) = 0 and (0(l) = (lI0) = A (45)

Note that the matrix (43) is for the space of b1 and b2, whereas (44) is for
the space of four components, Kb1pIbj>, (b2)pIb2>, (b1jptb2> and <b2p1b1>
of the excited state density matrix. By the fact that (lIQ1) = 0, Eq. (45)
G, Eq. (28a), no longer contains H1. Namely, the lowest order perturbation
scheme is exact for a two-state jump model. These nice features allow us
to carry out an analytical calculation of this model. It is elementary but
is tedious. So we give here only the results.
The result previously obtained by Takagawara (8) was a lengthy formula which
did not give us much insight into the problem. So we recently reexamined the
calculation and found that the final result is nicely rearranged into a com-
pact form (Ref 9).
We set for convenience (see Fig. 1)

b1-b2=w0, (b1+b2)/2b, a=b+w1, c=1+w2 (46)

and so

a -
b1

= — wo2 , c -
b2

= + w0/2 (47)

Then the spectral intensity W(c,00), Eq. (39), of the scattered light is shown
to consist of two terms, namely

W(c,=) = R +
WL (48)

where we have

2y
WR =kav1Ib1Xb2lv2lc>I2 2 2 2 2

+ l w2) h(w1, w0) I Ih(w2, —w0) I

xtYb)2+A2wl4 w0) (w2- o)2 +(Yb+Ym)2(Wl+ w2) (49)

with

h(w, w0) = b + i(w- {Y + + i(w + we)] + A2) (50)

and

w12
W =w w — / (51)L a±b1 b2÷c 2 +w b

b 12
with

y 2
wb =I<aIV1Ib,>12

m

h(w , Wt)

y y'w,w)
=I<aIV1I1>I2

— / 2
1

p_1 2 (52)
+ ''m 1' wo)] +

2 ' A2
Wb = I<b2 Iv2Ic> m

2

h(w2, —w0)

= I<bIV2Ic>I2 1m
/

W2)W0)
2 (53)

+ 'm y 2,w0fl w2+2 w02,w0)1

4 A2(y+2y)=

(1m+21b)+
(54)
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with
2

'('(w, ) — i g, (A) ) = ______________________ (55)
0 0 i(CA)+ -

The first term WR looks to correspond to the Raman scattering, whereas WL to
the luminescence. In this model, there is no second order emission if
the off-diagonal modulation is not present because, then the states A and C
are not connected. By the off-diagonal modulation, B1 and B2 are mixed and
the channel from A to C is opened.
In the static limit of y = 0, the luminescence term is zero and W is
reduced to m R

2
w = 2c

w2) — ________- (56)
T2 2 2 2 r2 2 2 2

[(w1+ + w0/4) b 'I +o
This is a pure Raman scattering through the intermediate states B and B2
which are mixed together by the off-diagonal perturbation and have the dipole
matrix elements between both A and C. For a finite value of I , the lumi-
nescence appears and the Raman line is broadened to a Loretzial form with the
half width equal to ' . This broadening is caused by the nonstatic IMSI,
through which the resrvoir exchanges energy with the radiation. As the
modulation rate becomes faster, the luminescence increases in intensity, and
the Raman line is broadened further. Because of resonance! the Raman inten-
sity may show peaks at frequencies where ci) coincides with the energy differ-
ence between either of the excited states and the final state. Theses peaks
superpose on luminescence and make one wonder if it is legitimate to call
as the Raman term at all. However, as far as we see from our analysis, it 15
natural to interprete these peaks as the result of resonance enhancement of
the Raman component rather than the luminescence. When the modulation rate
is so fast that the effect of off-diagonal perturbation is averaged out, the
optical response will totally disappear. The integrated intensity of the
second order optical response thus increases from a finite value correspondig
to (56) as m increases from zero, attains a maximum and finally vanishes.
An analytical expression of the integrated intensity is easily obtained for
this model.
Figures 2 and 3 illustrate the spectral distributions of WR and WT for a
particular set of the parameters. The excited states are separatd by
w = 0.3 and are modulated by an off-diagonal with the magnitude equal to 0.5.
TRe off-resonance of the incident light is set at 0.15. The natural radiation
damping rate is taken as 0.01. The intensity contours are calculated for
different values of the modulation rate of the off-diagonal perturbation.
Figure 2 is for the Raman term, and Fig. 3 for the luminescence term. The
Raman response shows a sharp peak at the Raman position,w1=w2, for y = 0.01
and the resonance peaks at w2=O.5. These peaks decline rather quicly as
y increases. Already for y = 0.1, the Raman peak is weaker than the reson-
ace peaks and becomes unnoiceable for y = 0.5. In Fig. 3, the luminescence
peaks at wz=± 0.5 are distinct for small mvalues of y , but merge into a
single peak when y becomes larger than 0.5 and are rntionally narrowed.
These numbers are nt so significant but the figures indicate the general
features.
The luminescence term WL consists of three factors. The first and second
factors correspond to the transition rates from A to B1 and from B2 to C
by absorption and emission of light, respectively. The third factor is the
branching ratio for the channel B1B2, 2 'b being the decay rate of B1 due
to the radiation damping. It is to be noticed, however, the rates wa b or

is not quite the same as the absorption or the emission rate,
wtc is given by the formula

w (abs) = lim Re Idt e5t Tr V (t)p(O) V (0)ab J 1 1
s-,o 0

_Y' +y'(w , w)= <aIV1IbI2 —— /
b 1

1
0

2 (57)
'l' (1)0)] + l Wo_ l'

or
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_______ y'(w1, w0)w = w (abs)
a÷b1 a÷b1

1b + + y'(w1, w0)

and (53) and (58) by a similar relation. If the natural damping is ignored
(52) and (53) are identical with the corresponding rates of absorption and
emission respectively. We have, at present, no physical intuition to explain
this delicate differece of the rates. Except this , the expression (51) for
W shows that this in fact represents the luminescence process which is
cmposed of three steps.
The shift and the width y' of the excited state appearing in Eqs. (52) and
(53) are generally dependent on the off-resonance w1-w0/2 or w2+w0/2 - Only
in the case of exact resonance, namely when w1=w0/2 or w2 = -wo/2, they are
equal to those of the state B1 or B2modulated by the IMSI independently of
the optical process.
On the other hand, the transition rate w2 in Eq. (54) is intrinsic to the
excited states in the sense that it is exactly equal to that which results
from the IMSI. It should be noted, however, that the intrinsic relaxation
of the intermediate states by IMSI is incorporated into the optical process
only as an element in the luminescent process. Other factors in WR and WL
indicate the importance of dynamical coherence of IMSI in an optical process.
This will be clearer if transient responses are treated along the same line.
We have done this to some extent, but more are left for future studies.
The separation of the Raman and the luminescence terms, as was shown for our
simple model, is conjectured to be a general matter. A few more examples
have been treated parallel to the model here discussed. We have not, how-
ever been able to show this in a general way. If a nice prescription

2 2

0.15

w0 0.3

0.5

0.01

w1 015
w0 0.3
O.5

w

x IO
.0

w

x IO

Fig. 2. The Raman-like spectrum
of a four—level atom modulated by
an off-diagonal IMSI.

wbc(emission) =

Xma5

-0.5

y05

We

• Xm 0.1

'Ym0.01

0.0 0.5 We

Fig. 3. The luminescence spectrum
of a four-level atom modulated by
an off-diagonal IMSI.

1b + y(W2, -w0)2=
D2Iv2Ic>I 2' w0)]+[w2 u0- (w2,-w0)J2

(58)

The expressions (52) and (56) are related by

(59)
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found for this purpose, it can be applied to a wider class of physical pro-
blems in which the IMSI plays an essential role.
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