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Mixtures of polar and associating molecules
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Abstract - Recent advances in the statistical thermodynamics of polar liquid mixtures
are reviewed. Perturbation theories are now available that successfully describe the
effects ofboth direct electrostatic and induction forces, provided the molecules are not
too nonspherical in shape. New theories are also available for mixtures in which
molecular association, solvation, or hydrogen bonding occurs, and initial comparisons
with computer simulation results are encouraging. More accurate intermolecular
potential models are needed in order to use these theories to predict the behavior of real
polar liquids.

INTRODUCTION

Thermodynamicnonideality in mixtures arises from differences in the intermolecular forces
among the various molecular species present. These differences occur because ofdifferences in
molecular size, dispersion forces, molecular shape, polarity, polarizability, etc. For mixtures of
neutral, spherical molecules the WCA form ofperturbation theory gives a good account of
nonidealities that arise from size and dispersion force differences (for reviews ofthis work see, for
example, refs. 1-3). For mixtures ofnonspherical molecules, somewhat different approaches have
been used to describe effects due to nonspherical shape on the one hand, and effects due to polarity
and polarizability on the other hand. For the first class ofmixtures, in which the molecular
species are nonpolar but differ in shape and dispersion forces, the liquid structure is largely
determined by the repulsive forces (as is the case for neutral, spherical molecules), and the WCA
approach is again quite successful. The reference fluid is one in which the molecules interact with
the repulsive branch ofthe pair potential (or ofthe site-site potential in the case ofinteraction site
models), and the attractive part ofthe potential is treated as a perturbation. This approach has
been extensively applied to nonpolar liquids, and is described in several reviews (refs. 3-6) as well
as in recent papers (e.g. refs. 7,8).

In this paper we focus our attention on the second class of mixtures, where polarity and
polarizability play a significant role. In such liquids the structure is strongly influenced by the
electrostatic, as well as the repulsive, forces and a simple WCA treatment is usually inadequate.
If the molecules are not highly polar, and the dipole is not very much off-center it is usually
possible to use perturbation theory to describe the thermodynamic properties. We describe this
work in Section 2 below, and refer to such liquids as non-associating since the intermolecular
interactions are relatively weak. When the electrostatic forces are strong, or off-center charge
centers are important, the interactions are often much stronger, and long-lived dimers or higher
s-mers can form. We refer to such cases as associated mixtures; the association can occur between
like or unlike molecules, or both. Simple perturbation theory fails in such cases, and the most
successful theories at present are based on cluster expansions. These are described in Section 3.
It should be kept in mind that the distinction between non-associating and associating mixtures is
quite arbitrary - in reality there is a continuous transition between the two types. The distinction
is useful as a qualitative measure of the interaction strength, and also because the two classes of
mixture are treated by different theories at present.

MIXTURES WITH WEAK INTERACTIONS (NON-ASSOCIATING MOLECULES)

If the electrostatic interactions are not very strong or off-center, it is usually possible to describe
the thermodynamic properties using perturbation theory. The usual expansion functional is
either the intermolecular potential energy u itself (the u-expansion) or the Boltzmann factor
exp(-u/kT) (called the f-expansion or reference averaged Mayer function theory). In either case,
the simplest theory is obtained when a reference fluid of spherical molecules is chosen. In this
section we give a brief survey of these theories, and examples of their application to mixtures.
More detailed reviews are given elsewhere (refs. 3-5).
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The u-expansion is the oldest ofthe perturbation theories for molecular fluids, and is the easiest
to use. The reference pair potential u0(r) is defined by

u(r) <u(ro1ü2)> (1)12
whereu(r1o2) is the full pair potential for the fluid ofinterest, w is the orientation ofmolecule i
(oi4i for linear or OicIiXi for nonlinear molecules), and < .. > 2meansan unweighted
average over molecular orientations. With this choice the first-order perturbation term A1
vanishes and the series for the Helmholtz energy becomes

A=A+A2+A3+... (2)

The second-order term A2 involves integrals over the two- and three-body reference correlation
functions. The third-order term A3 is more complex in general, but for electrostatic forces reduces
to integrals over two- and three-body reference correlation functions. These integrals have been
evaluated and fitted to simple functions for a variety ofintermolecular force types (refs. 9,10), and
detailed descriptions ofthe theory and its use have been given by Gubbins and Twu (ref. 9), Twu
and Gubbins (ref. 11), and Moser et al. (ref. 12).

Unfortunately, the series ofeqn. (2) is slow to converge, and even the inclusion ofA is not
sufficient to deal with strongly polar molecules such as alcohols or water. This led tell et al. (ref.
13) to propose a Padé approximant to the series,

(3)
A = A + A/(1 — A/A)

This equation agrees well with computer simulation results for fluids with strong electrostatic
forces, provided that the molecules possess spherical or nearly spherical cores (ref. 4). This theory
has been extended to include quantum corrections (ref. 14), nonaxial molecules (ref. 15) and
induction effects (refs. 16,17).

Extensive comparisons ofeqn. (3) with experimental data have been made. These comparisons
have been for small, rigid molecules such as N2,HBr,HC1, CO, N20, C2H4, CH4 CH3C1, etc. and
have been reviewed recently (refs. 3,5,18). In Fig. 1 is shown an example taken from the work of
Lucas (ref. 19). In these calculations the author fit potential parameters for the pure components,
but not for the mixture; the mixture parameters are obtained from combining rules, and no fitting
to mixture data is involved. Thus the comparison with experiment is a test ofthe theory's ability
to describe the composition dependence. It is seen that the Padé gives much better results than
the van der Waals 1-fluid theory or Redlich-Kwong equation, which assume the molecules to be
spherical. This is because the Padé correctly accounts for the dipolar and quadrupolar forces that
are present for 11C1. Winkelmann (ref. 20) has applied the theory to mixtures involving acetone,
diethyl ether, chloroform, dimethyl formamide, water, and methanol with good results. He fits an
unlike pair potential parameter to mixture data, in addition to fitting parameters to pure fluid
data. An example of his results is given in the vapour-liquid equilibrium plot of Fig. 2.

The u-expansion has been extended to include the effects of many-body induction forces (Fig. 3),
which have been found to be important in polar liquids (refs. 16,23). Such effects are difficult to
account for in conventional perturbation theory, but Wertheim (ref. 16) has proposed a graphical
resummation method that he calls renormalization theory which results in an expression for the
free energy that is similar in form to the Padé approximant of eqn. (3). The basic idea of the
Wertheim approach is that most molecules in the liquid will have a dipole moment much closer to
the average total, or renormalized, dipole moment ii',given by

(4)p=p+a E
where p is the permanent dipole moment, a the polarizability, and E' the mean electric field
experienced by the molecule in some fixed orientation w. Typically p' exceeds i by20-30%, and
occasionally by 100% or more. In Wertheim's renormalized theory one generates a perturbation
expansion in terms of p' and a rather than in p and a. He calls this the 1-R theory (first level of
renormalization). He also presents a 2-R theory in which a is also renormalized to a'. However,
the 2-R theory usually gives results only slightly different from the 1-R theory. The theory is in
good agreement with computer simulation results. Wertheim's renormalization theory has been
extended to mixtures of purely polar fluids by Venkatasubramanian et al. (ref. 17), and to
mixtures of quadrupolar molecules at both the 1-R (refs. 24,25) and 2-R (ref. 26) levels of
renormalization. Calculations have been carried out for a wide variety of mixtures, and the
renormalization theory has been compared with the un-renormalized (0-R) theory (which neglects
many-body effects) and with experimental data. For the excess properties, the polarizability
contribution is found to be of the order of 50% of the total in many cases. While the 1-R theory
generally gives a much better account of such effects than the 0-R theory, the numerical
differences between the 1-R and 2-R treatments are usually small. Some typical results for
HC1/HBr mixtures are shown in Figs. 4 and 5, taken from the work of Gray et al. (ref. 25). The
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Fig. 1. Comparison of theory and
experimental vapour-liquid equi-
libria for Xe/HC1 mixtures. The
experimental data (points) is from
Calado et al.(ref.21). Solid lines
are the results from the Padé ap-
proximant of eqn. (3) with Kohier
(ref.22) combining rules, dashed lines
are from the Redlich-Kwong empiri-
cal equation of state. The vdWl
theory gives results that are indistin-
guishable from those for the Redlich-
Kwong equation on the scale of the
plot.(From Lucas, ref.19.)

Fig. 2. Pxy results for chloroform-
diethyl ether mixtures from experi-
ment (points) and from eqn. (3),
solid lines. Dashed line is azeotropic
locus. (From Winkelmann, ref.20.)

Fig. 3. A four-body induction term
in the potential energy which arises
from two permanent dipoles 1 and
4 interacting via dipoles induced in
molecules 2 and 3.

Fig. 4. GE for HC1/HBr mixtures at
195.4K, 0 bar. Experimental data
(points) is from Calado et al.(ref. 21)
and lines are theoretical calculations.
(From Gray et al., ref. 25.)

Fig. 5. Vapour-liquid equilibria for
HC1/HBr at 195.4K. The 1-R and
1-R (Fit) results are almost indis-
tinguishable on the scale of the
plot. Key as in Fig. 4.
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Fig. 6. The electrostatic force contribution
to the free energy of the HD +PCQ fluid
as a function of quadrupole strength Qeff*2,
for dumbbells with bond length e/a = 0.6
at reduced density pv = 0.4. Here a is
the hard sphere (site) diameter, p is number
density, v is volume of the dumbbell, and
Geff is the diameter of a sphere having the
same volume as the dumbbell. Further
details are given in the text. (From Wojcik
and Gubbins, ref. 27).
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potential models for HCI and HBr consisted ofa spherical Lennard-Jones term with the addition
ofdipole-dipole, dipole-quadrupole and quadrupole-quadrupole terms. Pure component Lennard-
Jones parameters were obtained by fitting the theory to experimental vapour pressure and
density data for the pure orthobaric liquid. In the results labelled 0-R and 1-R the unlike pair
parameters and c were calculated from the Lorentz-Berthelot combining rules, while in the
curve labelled 1-R(Fit) cp was fitted to the value ofthe equimolar excess Gibbs energy. Dipole
and quadrupole moments and polarizabilities were taken from the literature (ref. 4). The large
difference between the 0-R and 1-R results for GE is typical, and arises from neglect of multibody
induction terms in the 0-R theory.

The u-expansion described above is convenient and gives a good account ofthe effects of
electrostatic forces on thermodynamic properties. It is much less satisfactory for molecules with
highly nonspherical cores or for describing fluid structure. The f-expansion is an attempt to
overcome these defects to some extent, while retaining the simplicity of a reference fluid of
spherical molecules. In this theory the reference potential is defined through an unweighted
average over orientations of the Boltzmann factor exp[-u(r.o1o2)/kT],

exp[—u(r)/kT] = <exp[—u(ro1o2)/kT]> (5)12
This reference potential includes an averaged contribution from the anisotropic part of the
potential, and also gives the second virial coefficient exactly. Thus, the zeroth order f-expansion
becomes exact in the low density limit. However, the potential u0(r) depends on temperature and
must be calculated numerically for each new temperature or intermolecular potential function.
Thus the f-expansion is less convenient to use than the u-expansion.

With this choice of reference the A1 term again vanishes and the free energy series is again given
by eqn. (2). Terms beyond A2 have not been calculated. The fluid structure is usually obtained by
expanding the pair function y(r12) exp[u(rc12)/kT1g(r1c2). The fluid structure
calculated from the f-expansion is generally better than from the u-expansion, though there are
still considerable discrepancies. The thermodynamic properties calculated from the f-expansion
are generally more accurate than the u-expansion when the molecules possess nonspherical cores.
When the cores are nearly spherical the results from the two theories are similar (ref.4). The f-
expansion does not seem to have been applied to mixtures.

Among the most difficult fluids to treat are those in which the molecules have a significantly
nonspherical shape together with strong electrostatic forces. The fluid structure is then
dependent on both the shape and electrostatic effects, so that there is no simple reference fluid
from which to perturb. A prototype model system of this sort is a fluid of hard dumbbells (HD)
with embedded point charges (PC) placed in a quadrupolar symmetry; we call this the HD + PCQ
model. Computer simulation results for the Helmholtz energy of such a fluid (bond length *=
f/a = 0.6) are shown in Fig. 6, together with the results of several perturbation theories. The f-
expansion (dotted line) overestimates the effect of the electrostatic forces on the free energy. An
obvious, but naive, choice of reference fluid is one of hard dumbbells, so that A0 = AHD and

A=AHD+Al+A2+...
(6)
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The results for both first and second order treatments (with A1 and A2 calculated exactly by
computer simulation) are shown as dashed lines in Fig. 6. The first order theory gives results that
are much too low, while the second order theory overestimates the electrostatic effects and is no
better than the f-expansion. This hard dumbbell reference system does not contain all the strong
short-range forces, nor even all the repulsive forces, since the electrostatic forces will have
repulsive regions for certain molecular orientations. If we include the repulsive part of the
electrostatic forces in the reference potential, in addition to the HD part, eqn. (6) is modified to

A=AREP+Al+A2+... (7)

where AREP is the free energy ofthe repulsive force reference fluid. This series has been recently
studied by Wojcik and Gubbins (ref. 27) using Monte Carlo simulations in which the various
terms AREP, A1, and A2 are evaluated exactly. The results are shown in Fig. 6 as solid lines. The
A1 term alone still underestimates the effect ofelectrostatic forces, but the inclusion ofA2 now
gives results that agree almost exactly with the Monte Carlo values for A. The structure results
for the REP fluid are intermediate between those for the HD and HD + PCQ fluids. While eqn. (7)
is clearly superior to (6), it is still not a satisfactory solution to the problem because of the
difficulty in calculating A2 by analytic means.

In view ofthe poor convergence ofthe series ofeqn. (6), Rasaiah et al. (ref. 28) and Martina et al.
(ref. 29) have suggested the Padé approximant,

A = AHD + A1 + A/(1 — A3IA)
(8)

To avoid the difficulty ofcalculating the HD correlation functions that appear in A2 and A3, these
authors suggested replacing the functions by the corresponding functions for an effective hard
sphere (HS) fluid. The A2 and A3 terms then reduce to the simple forms for molecules with hard
sphere cores. Several prescriptions have been suggested for determining the best hard sphere
diameter in such a scheme, including equating the residual free energies or compressibility
factors for the HD and HS fluids. The dash-dot line in Fig. 6 shows the result ofusing eqn. (8),
with hard sphere diameters determined from the residual free energies. In practice, the A1 term
is often small enough to be neglected. The Padé ofeqn. (8) is seen to give quite good results.

Comparisons ofthe nonspherical reference system perturbation theory with experimental data
for mixtures seem to have been limited to nonpolar liquids, using the Kihara model with
Boublik's theory (refs. 30-32) or the Lennard-Jones interaction site model (ref. 33).

MIXTURES WITH STRONG INTERACTIONS (ASSOCIATING MOLECULES)

In fluids with strong, highly directional, attractive forces (e.g. due to hydrogen bonding, charge
transfer, etc.) the perturbation theories described in the previous section fail, and can even give
physically impossible results (ref. 34,35). In such cases the effects ofthese strong forces must be
incorporated in any theory from the beginning. For example, the strength of the hydrogen bond
between two water molecules is about 6 kcal/mole or 1ORT at room temperature, where R is the
gas constant and T the absolute temperature. In this section we first review some of the
theoretical approaches to such fluids, and then give some recent results from one of these theories.

Theories
The chemical theory is the oldest method for treating associating mixtures. It treats the strongly
anisotropic attractions as chemical reactions with a corresponding equilibrium constant. The
properties of the mixture are then related to this equilibrium constant through thermodynamic
identities. For example, for a solvating mixture of molecules A and B that 'bond' in a one to one
ratio, one assumes that A and B are in equilibrium with a dimer AB. One can then either assume
that the three species (A, B, and AB) form an ideal mixture or take into account the nonideality
through an empirical equation such as van Laar's, thus adding more adjustable parameters. We
are then faced with the problem of not only determining the equilibrium constant, but also the
temperature dependence of the equilibrium constant and any other physical parameters. This
approach is not incorrect; as we will see, classical statistical mechanical theories treat the
hydrogen bond and the chemical bond in a similar way, but this treatment requires much
experimental data to fit the empirical parameters.

One of the earliest statistical mechanical theories of hydrogen bonding is due to Andersen (refs.
34,35). For the case in which molecules contain only one attractive site, Andersen noted that
because a hydrogen bond is short ranged and highly directional, repulsive core interactions would
allow dimers but no higher s-mers to form. To take into account the strength of the hydrogen
bond, Andersen wrote a cluster expansion in terms of two densities: the overall density and a
density weighted by the strength of the hydrogen bond. Because of the restriction to only dimer
formation, Andersen was able to show that many diagrams in the expansion are negligible. This
theory was developed for the structure of the hydrogen-bonded fluid, but no calculations of the
thermodynamic properties were made. Andersen's influence can be seen in some of the most
recent papers on highly directional, attractive interactions (ref. 36).
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Chandler and Pratt (ref. 37) developed a theory to describe the intramolecular structure of
molecules based on intermolecular and external forces. The theory was developed for non-rigid
bonds ofchemical strength using a physical cluster expansion. The atom-atom bond was modeled
with a spherically symmetric attraction. Cummings and Stell (ref. 38) also used a spherically
symmetric bonding potential in their solution of the PY approximation for the chemical
equilibrium A + B AB. Since in both ofthese theories atoms are bonded to form molecules, any
orientational dependence of the bonding potential can be neglected. Since the orientational
dependence ofthe hydrogen bond is one ofits most important characteristics, this dependence
must be fundamental to any theory describing a hydrogen-bonding fluid. Therefore, we conclude
that although the above two theories are capable ofdescribing chemical equilibrium, they cannot,
in their present form, be applied to the problem of anisotropic attractions.

Recently, Cummings and Blum (ref. 39) have included the directional character ofthe interaction
in their theoretical study ofa model for water. They give the solution in the PY approximation for
a pure fluid ofhard spheres with tetrahedrally arranged charges. The short range character of
the hydrogen bond is modeled by surface adhesion (i.e. an infinitesimally wide and infinitely deep
potential well) and the angular dependence ofthe interactions are approximated by a truncated
spherical harmonic expansion.

Wertheim (ref. 36) also treats the problem ofmolecules interacting with highly directional
attractive forces explicitly. Like Andersen, he introduces the geometry of the interaction at an
early stage. However, Wertheim shows that graph cancellation due to steric effects is simpler and
more effective ifone uses a fugacity expansion in terms oftwo densities: the equilibrium
monomer density and the (initial) overall number density. By assuming that only dimers and no
higher s-mers form, Wertheim was able to greatly simplify the expansion. The resulting
equations are applicable to a pure fluid with short-ranged, highly orientationally dependent
attractive forces and hard repulsive cores, such that only dimers form. Wertheim has recently
extended his theory to multiple attraction sites per molecule (refs. 40,41).

Chapman et al. (ref. 42) have extended Wertheim's theory to binary mixtures ofcomponents A
and B in which only AB dimers can form (i.e., no AA or BB dimers form). The monomer density
and overall density are then related by the following equation:

(1) (2) (9)
pa=pa +Pa

where Pa is the overall number density of component a, p(l) is the density of monomers of
component a at equilibrium (after dimers have formed), and p(2) is the density of a molecules that
are present as dimers at equilibrium. The fraction of monomers of component a, X = p(l)/p, is
calculated in terms of Q

1 (10)

j g(f8(l2)d(l2)

where g(r12) is the pair distribution function for the reference system, 5(1) is a Mayer f
function defined by HB12 = exp[-I3uHfl(l2)] - 1, where uHB(l2) is the hydrogen-bond interaction,
and the integration is performed over all possible molecular separations and averaged over all
orientations. The resulting expression for the change in configurational Helmholtz free energy is
given by

= p (iogx — + (11)

where zA is the Helmholtz free energy of the associating mixture minus that of the reference
mixture, V is the volume, and f is 1/kBT where T is the temperature and kB is Boltzmann's
constant.

Chapman et al. (refs. 42,43) have solved the above equations for a solvating mixture of
components A and B that interact with off-center point charge dipoles of equal magnitude and
opposite sign. In their model, the like pairs interact as hard spheres and the unlike pairs interact
as hard spheres with a sum of coulombic interactions. They find excellent agreement with
computer simulation results when the coulombic interaction is of short enough range so that few
higher s-mers form.

Some results
In this section we give some of the results obtained by Chapman et al. (refs. 42,43) for solvating
AB mixtures. In Figs. 7-9 we show theoretical calculations of the fraction of monomers of each
component and of the excess Gibbs energy and volume of mixing at constant pressure, Pa3/kBT =
0.9925, for various values of the reduced dipole moment. In these calculations we have used a
coulombic interaction cutoff distance r of 1.0 a. In Fig. 7, the fraction of monomers is the fraction
of component A or B that exists as a monomer in solution. In Figs. 8 and 9 are shown the large
negative values for the excess properties that are common in strongly solvated mixtures e.g.
acetic acid/triethyl amine and acetone/chloroform. These figures show that the theory produces
qualitatively expected results for mixtures over a range of strengths of interaction from ideal
solution to chemical bonding.
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Fig. 7. The fraction of monomers, p(l)/p,
of each component as a function of mole
fraction A (in a mixture of A and B with AB
association) for two values of the reduced
dipole moment, 11* = ii/(kTcr3)h/2. (From
Chapman et al., ref. 43.)

XA

Fig. 8. The excess Gibbs energy, at the same
conditions as in Fig. 7. (From Chapman et al.,
ref. 43.)

Fig. 9. The excess volume, at the same conditions
as in Fig. 8. (From Chapman et al., ref. 43)

Fig. 10. Comparison between Monte Carlo
simulation results (circles) and theory (curves)
for the fraction of monomers àf each component
at = 0.75,p = 0.4687, and r = 0.55o.
(From Chapman et al., ref. 42.)
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Fig. 11. Comparison between Monte Carlo
results (circles) and theory (curves) for the
internal energy change on mixing for the same
mixture and conditions as in Fig. 12. (From
Chapman et al., ref. 42.)

Fig. 12. The excess enthalpy of chloroform -
acetone mixtures at 300K from theory (curve)
and experiment (points). (From Chapman
et al., ref. 43.)

Mole Fraction A 0.2 0.4 0.6 0.8
Mole Fraction A = PA/C0A + PB)

-0.8

-1.6z
0

-2.4

-3.2

75

.1.0.

0 0.2 0.4 0.6 0.8 .0 0.2 0.4 0.6 0.8
Mole Fraction A = Pe/(Pe + PB)

XA Mole Fraction Acetone

In Figs. 10 and 11 Metropolis Monte Carlo simulation results are compared with theory for the
fraction of monomers and change in internal energy on mixing at constant density. The
simulation results are for p'' = ± 0.75 and p' = 0.4687 with 108 total particles. The cutoff for the
coulombic interaction rc was chosen to be 0.55 a so that only dimers could form. The averages
were taken over 4.5 x 106 configurations after equilibration of at least 2. x 106 configurations.
The error bars, calculated based on averages over 5. x 105 configurations, represent one standard
deviation from the mean. Similarly good agreement between theory and simulation was found for

= ± 1.00 (ref. 42).
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The potential models used by Chapman et al. are too crude to expect quantitative predictions for
real mixtures, but it is ofinterest to see ifthe theory predicts qualitatively correct results.
Chapman et a!. (43) have compared the theory with experimental data for the chloroform-acetone
mixture at about 300K. The results for the excess enthalpy are shown in Fig. 12. Dipole and
quadrupole moments from the literature were used to determine the magnitude and location of
the charges (one ofthe charges was arbitrarily assigned to the center ofthe sphere for each
species), and sphere diameters were determined from Lennard-Jones ci paramters. The reduced
pressure Pcr3/kBT = 4.0 corresponds to a pure component reduced density ofp* 0.7, which is a
typical liquid density. Agreement between theory and experiment is good considering the crude
model.

CONCLUSION

Therehave been major advances in the statistical mechanics ofpolar liquids in the last fifteen
years, and these theories give a good account ofmodel polar fluids, particularly for molecules that
are not too nonspherical. As for other types ofliquids, a major problem is the need for more
realistic and accurate intermolecular potential models to describe real liquids. At present
theorists are forced to work with quite crude models, particularly for polar and associating
molecules. Some problems also remain in the statistical mechanics ofpolar fluids. We do not yet
have a satisfactory theory for molecules that are both nonspherical in shape and strongly polar.
For the case of associating molecules, further theoretical developments are needed in order to deal
with molecules with multiple attractive sites and ones that form s-mers with s>2.
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