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Abstract - The paper advocates the application of a mixture of theoretical 
molecular physical - a solid state physical quantum mechanical methods to 
treat the electronic structure and solid state physical properties of poly- 
mers. The latter ones are the really important properties which determine 
their applicability as plastics and as new types of materials as well as 
the functions of biopolymers. 

calculate the energy band structures of periodic polymers, methods for the 
treatment of non-periodic polymers and their electron-correlation problem 
are outlined. Techniques to compute interactions between them and to take 
into account the effect of environment on their band structures are briefly 
mentioned. 

tronic structure of a few illustrative examples. 

After a brief sketch of the Hartree-Fock crystal orbital theory to 

Finally, the paper gives a short discussion of the results for the elec- 

1, INTRODUCTION 

Organic polymers play a very important role in chemistry, biology and solid state physics. 
They form plastics, like PVC, teflon, polyacrilnitril etc., they play a key role in life 
processes, like DNA, RNA, proteins, polysaccharides etc. and finally, due to their com- 
plexity they give possibilities for unusual physical phenomena, like the occurrence of 
solitons in DNA and proteins, polymeric superlattices in copolymers, different highly con- 
ducting polymers (doped (CH),, (SN),),the TCNQ-TTF system doped poly-p-phenylenes etc.) 
After the discovery of low Tc superconductivity also in some polymers (SNx, the Se analogue 
of tetratiofulvalene stack) and most recently finding high Tc superconductors in ceramics 
(the La2-yBayCu04- 
high Tc superconducting polymeric systems will be discovered. 

Though polymers are not necessarily quasi one-dimensional, most of them are. One the other 
hand besides some periodic polymers (like polyethylene, teflon, (SN),, etc.) most of them 
are not periodic at all (proteins, DNA, many copolymers or any kinds of doped polymers), 

To understand the different chemical and physical properties of polymers and espeicially to be 
able to predict some technologically useful polymers (as coating materials, prospective 
elements of new kinds of chips, materials used to new kind of lattices, solar cells and non- 
linear optical devices, etc.)as well as the biological functions of biological macromolecules 
one has to be able to treat accurately enough their electronic structure. Only in this way 
it will be possible to take advantage of the complex solid state physical nature of poly- 
mers and synthetize "taylor made" polymers for different technological or biological purposes. 

To understand the non-local 
transport, plasmons and solitons in polymers, their excitonic and phonon spectra, magnetic 
and mechanical properties, etc.) one has to take into account that each polymer (independently 
whether it is an insulator, semiconductor or conductor) is a rather complicated solid usu- 
ally with a larger number of atoms (orbitals) in its unit cell. Therefore it is not enough 
to treat its constituent molecules or residues with the help of quantum chemical methods, 
but one has to merge the methods of molecular physics with those of theoretical solid state 
physics. 

If the polymer is periodic one can use the extension of the Hartree-Fock-Roothaan equations 
(ref. 3 )  to solids (ref. 4) to obtain its energy band structure. If the polymer is non- 
periodic different methods (see below) of the theor 
to obtain the energy level distribution Cdensity of'states (DOS) cur:es of the polymer3 
Since the Hartree-Fock band structure calculation always gives a too large fundamental gap 
in any solid, one has to correct not only the total energy per unit cell, but also at least 
the position of the valence (highest filled) and conduction (lowest unfilled) bands for 

(tef. 1 )  and YBa2Cu307-5 (ref. 2 )  crystals) rather probably also 

solid state physical properties of polymers (charge and energy 

of disordered s stems can be applied 
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correlation (one obtains in this way a so-called quasi-particle (QP) band structure) which 
has an essentially smaller gap in reasonable agreement with experiment (see also below). 
Finally, to be able to treat any kind of physical properties of any kind of polymer, one 
has to be able to handle both the interaction between polymeric chains and the effect of the 
environment on the electronic structure of a polymer (the latter is especially important 
in the case of biopolymers). Both problems have been already solved in a satisfactory way, 

Computer programs for all these methods are available on different computers and super- 
computers, This means that in addition to the excitonic and vibrational spectra of some poly- 
mers with a smaller unit cell, we are now in the position to calculate any kind of physical 
property of any type of polymer. 

2. METHODS 

2.1. Hartree-Fock-Roothaan equations for quasi ID solids 

One can write down the crystal orbital ( C O )  of a quasi ID solid(po1ymer) as a linear combi- 
nation of Bloch orbitals (ref. 4 ) .  

where the Bloch orbital y(k,r)g can be defined in its LCAO form as 

Here k is the cr stal momentum, 2N+1 denotes the number of unit cells, a the elementary 
translation, w $  the g-th A 0  centered in the q-th unit cell, If one applies the Ritz 
variational pro2edure, takes into account the translational symmetry and introduces the 
Born-Khrmh periodic boundary conditiqns (the polymer is not taken as an open chain, but as 
a loop),introduces the Fock operator F as the one-electron operator, one arrives after 
some algebra to the expression of the ab initio S C F  LCAO CO theory (ref. 4 )  

with the matrix elements 

and 

Here the subscripts in the AO-s 2 
the superscript q gives the unit cell in which it is centered, zt 
atom t (M is the number of atoms in the unit cell) and the vector h gives the position 
of atom t in cell q. In the two-electron part of (5b) the operator ' a , , ,  exchanges the 
coordinates of electron 1 and 2, respectively on the r.h.s. from this operator and finally 
the charge-bond order matrix elements P u , v  (ql-q2) are defined in the quasi ID case as 

specify always which A 0  has to be considered and 
s the nuclear charge of 

(n* 

Equ.-s ( 3 )  and (6) define a complete ab initio procedure which makes it possible to calculate 
the band structure of any periodic polymer including those which possess instead of a simple 
translation a combined symmetry operation (for instance in the case of a helix a screw 
operation (translation + rotation)). In this case the crystal momentum k is defined on the 
combined symmetry (ref. 5). 

is the number of filled bands). 
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Another important question is, how many neighbors one has to take into account in the Fourier 
transforms ( 4 )  to obtain consistent results. Suhai (ref. 6 )  who has investigated this problem 
in detail came to the conclusion that if one does not want to destroy the periodic symmetry 
of the polymer and wants to take care of the conservation of its electric neutrality, one 
has to apply different cut-off radii for the different kinds of integrals occurring in equ.-s 
(5a) and (5b). 

2.2. Non-periodic polymers 

In the general case of a disordered system the coherent potential approximation (CPA) with an 
energy and k-dpendent self-energy seems to be the relatively most accurate method to obtain 
the DOS of the system (ref. 7 ) .  On the other hand if one has a quasi ID system one can obtain 
the DOS-s of a non-periodic polymer much more easily and accurately using the negative factor 
counting (NFC) technique (ref. 8)  based on Dean's negative eigenvalue theorem (ref. 9). 

To summarize the NFC method let us assume that we have in a quasi 1D chain N units and 
1 oribtal per unit (Hiickel approximation). (Of course we can obtain in this way the DOS of 
only one band, for instance the valence band of a multicomponent system,) The resulting 
Hiickel determinant will be tridiagonal (in the first neighbors' interactions approximation), 

0 (3v A u - A  
4 where N is a large number (N = lo3 or even 10 1, After performing a band structure calculation 

by taking all the components periodically repeated,the diagonal elementsd; and the off- 
diagonal ones 13. can be determined on the basis of the position of the band under consideration 
in the periodicJcase of the appropriate component and taking into account the band widths (ref, 8). 

If we could find out all the roots of ( 7 ) ,  we could write 

Since this is not generally the case (or would require astronomic computer times) instead 
of this one can bring the tridiagonal determinant into a didiagonal form by wiping out the 
lower diagonal using a Gaussian elimination technique. (To start this procedure one has 
to substract from the second row of the determinant the first one multiplied by 13*( dl- 
Denoting the new diagonal elements of  the didiagonal equivalent of ( 7 )  by E i( 3 1, we can write 

) ,  

N 

where fi( 3 ) can be calculated for a chosen value of 1 very quickly with the help of the 
recursion formula 

Comparing equ. -s  (8)  and (9 ) ,  i t  is easy to see t h a t  for  a g i v e n  9 -value the number of 
eigenvalues smaller than2 

By giving\ different values throughout the spectrum and taking the difference of the number 
of negative (1 )-s belonging to consecutive 1 -values, one can obtain a histogram for the 
distribution of eigenvalues (density of states) of H for any desired accuracy, 

One should mention that the method works not only in the one-band case, but one can obtain 
in a similar way the total DOS curves of a multicomponent disordered system, 
with the corresponding Fock and overlap matrix blocks (ref. 10). For instance if one has 
a unit B after unit an A the matrix blocks have to be computed (ref. 10). 

has to be equal to the number of negative Ci(?) factors. 

= 
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2.3. Correlation in polymeric chains 

For an infinite or finite but long polymeric chain only size-consistent methods can be used 
to treat the electron correlation problem. Until now the Moeller-Plesset (MP) (ref. Il)many 
body perturbation theory has been applied for polymers in the second (ref. 12) and in a few 
cases in the third order (ref. 13) to correct the total energy per unit cell as.well as the 
valence- and conduction bands (quasi-particle (QP) band structures). 

In the MP theory one partitiones the total Hamiltonian in the form 

A 
where n is the number of electrons and H' is the deviation from the sum of the Fock operators. 
One can show that the first order perturbation energy is already included in the EHF 
(Hartree-Fock energy) and for the second order one can derive for an infinite system in its 
ground state the expression (ref. 12) 

where the combined index I stands for the band index ni and k-value ki. The c - s  in the 
denominator are one particle energies (in an infinite system the Coulomb- and exchange 
integrals occurring in the HF singlet excitation energy expression vanish (ref. 14)) 

One can write (12) in the simpler form 

One can express E2 
is an extra electron in the conduction band ( N + I  electron system) or a positive hole in 
the valence band ( N - l  system). Knowing that 

in a similar way as a sum of pair correlation energies also if there 

( N - l )  the expressions (generalized Koopmans' theorem) and substituting for E ( N + l )  , E(N) and 
E(HF) + E2 (where E2 is the MP/2 correlation energy) one can finally write (ref. 12) 

The four self-energies occurring in equ.-s (15a) and (15b) can be easily expressed as the 
difference of the appropriate sums of the pair correlation energies $1 (X 
(ref. 12). One can define in a similar way quasi particle band struc 
(ref. 13). The calculation of QB band structures using the coupled cluster theory (ref. 1 4 )  

in the 1 + Tg + - T T 

N-I, N, N+I) 
res using MP/3 

A 1 A A  
approximation is in progress (ref. 15). 2 2 2  

2.4. Interaction between polymer chains and the effect of environment 

If one has a larger number of interacting molecules or differnt interacting chains at medium 
distances 2.6 r 4.0 A one cannot afford the supermolecule (superchain) approach and a per- 
turbational theoretical treatment of the interacting systems is both rather inaccurate and 
very complicated. With the help of a new method, developed in Erlangen, the problem still 
can be solved in a satisfactory way. One can solve the HF problem of a molecule or a chain 
in the presence of all the others 
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for all the interacting systems. In each iteration step the density 

will change and with it also the potential V1( 3,) of system I. One can go around all sub- 
systems until a mutually consistent (MCF) solution is reached which happens 
iteration cycles (ref. 16). The real difficult problem was the proper reDresentation of the 
potentials V1 of the subsystem with the help of point charges. One wanted on the one hand 
accurate enough interaction energies (which automatically contain besides the electrostatic 
also the polarization contribution) and which can be supplemented in a simple way by the 
exchange and charge transfer terms (ref. 17) 
dispersion interaction energies can still be added using London's empirical expression (ref, 

This method was successfully applied also to calculate the simultaneous interaction of more 
than hundred water molecules around a cytosine stack to generate a mean field acting on 
the stack (ref. 19). 

usually in a few 

and on the other hand a rather fast method. The 
18). 

3.  SHORT DISCUSSION OF SOME SELECTED RESULTS 

Using the ab initio SCF LCAO CO method a large number of calculations have been performed for 
different selected polymers. For poly(H-F) the different forms of polyacetylene, for polyethy- 
lene, for polyfluoroethylene and for (SN), also different basis sets have been applied. We 
do not give here all the appropriate references, but refer to Chapter 2 of the book mentioned 
in ref. 4 .  With a minimal basis set the calculations have been extended also to systems 
with larger unit cells like polypyrrole, polythiophene and its derivatives as well as to 
the four nucleotide base stacks, for 3 polynucleotides (X+S+P, where X stands for C,T or A, 
S for the sugar and P for the phosphate group) and for all the 20 homopolypeptides (when the 
same 20 amino acid residue is repeated). 

One could find - in agreement with chemical intuition - that if one calculates the band 
structures of a covalently bound chain (like polyacetylene or polyethylene) both the valence 
and conduction bands become very broad (4-6 eV). If one deals with a stacked system (TCNQ-TTF 
and the nucleotide base stacks) the widths of these bands are between 0.1 and 1.0 eV. 
Since the TCNQ-TTF charge transfer system is a good conductor, one would expect that a 
nucleotide base stack which has similar band widths if it is periodic (the same base is 
repeated) would become also a rather good conductor if it could be successfully doped with 
an electron donor or acceptor (which is not a trivial task). Finally, if a chain is held to- 
gether only by hydrogen bridges (H-F...H-F...) we have found that the band widths are below 
0.1 eV. 

In the case of non-periodic polymers we have checked the matrix block NFC method by calculating 
the DOS of an alternating glyala chain. Since in this case also a direct band structure cal- 
culation could be performed, one could compare the DOS curves obtained in the two different 
ways (see Chapter 4 of the book mentioned in ref, 4 ) .  The agreement of the curves determined 
in these two different ways turned out to be excellent. 

After these large scale matrix block NFC calculations have been performed both for non- 
periodic nucleotide base stacks (ref. 19) containing all the four components and with a 
chain length of 300 units or for four-, five- and six components polypeptides (ref. 20). 
In the case if the different units ABCD etc. were repeated in a periodic way (ABCD), in 
all cases for all bands we have obtained only extremely narrow ( 6-function like peaks) 
with large gaps 
(with the help of a Monte Carlo program) the allowed valence- and conduction band energy 
regions broadened to about 
bility of a hopping-type conduction. In the case of a four-component random polypeptide 
we have calculated explicitely the hopping frequencies and have found (ref. 20)  that they 
are in the same order of magnitude than for good amorphous 3D conductors. This means that 
if non-periodic proteins are doped (especially by electron donors) they can become quite 
good hopping conductors. 

For the case of the correlated QP band structures we want to mention also the case of trans- 
alternating polyacetylene. This system has (even after geometry optimization) a far too 
large gap if one uses a minimal basis set ( 8 . 3  eV) which decreases even if one introduces 
correlation using 12). On the other hand applying a 6-31 GF* 
basis (double 
and with MP/2 correlation to w 3  eV (ref. 12). The experimental peak is around 2 eV. For 
the remaining discrepancies is easy to account by the missing part of correlation which 
according to Suhai's estimation (ref. 2.5 eV, the neglection 
of the relaxation of the other CO-s in the case of introducing an extra electron or hole, 
respectively, and finally the neglect of phonon polaron effects (rigid lattice calculations). 

between them, On the other hand if the sequences were chosen randomly 

4 eV both with very few and narrow gaps, This gives the possi- 

MP/2 only to 7.7 eV (ref. 
+polarization functions both on C and on H), the HF gap decreases to 4.4 eV 

12) would bring down the gap to 
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Finally, it should be mentioned that on the supercomputers of IBM in Poughkeepsie-Kingston 
(N.Y., USA) and Rome we have performed also large scale calculations to determine the effect 
of the water and Na' environments of different periodic base stacks and polypeptides both in 
the &-helical and 8-pleated sheet conformation. The results show generally an & I  eV down- 
ward shift of both of the conduction and valence band and a band narrowing of &I0 per cent 
in these systems. 

4. CONCLUDING REMARKS 

From the briefly outlined formalisms and very shortly discussed illustrative examples one can 
see that if one starts from a good basis set HF calculation and corrects for correlation 
(this is possible in a somewhat tedious way also for disordered polymers), takes into account 
the interaction between chains in a polymeric material and the effect of environment one can 
obtain a good enough quality level distribution and wavefunction, With the help of them one 
can account for nearly any kind of physical properties of polymers in good agreement with 
experiment, This has been done until now for the ground state properties of (SN) 
Chapter 2 of the several times mentioned book) for the gap of alternating transpglyacetylene 
(ref. 1 2 ) ,  for the exciton spectra of polyacetylene, polydiacetylene, of a cytosine stack 
and forpolyglycine (Chapter 8 of the book), for the vibrational spectra of periodic and 
non-periodic polyacetylene (Chapter 9 of the book) and for the different elastic moduli of 
polyethylene (Chapter 10 of the book). With the use of still more advanced supercomputers 
one can repeat the same kind of calculations for polymers with larger unit cells and extend 
the calculationsto other not yet calculated properties (tansport-, magnetic- and other 
mechanical properties, heat conduction and resistance etc.). 

On the one hand in this way one can interpret the different physical-chemical properties of 
polymers and on the basis of them their biological functions in the case of biopolyrners. 
On the other hand one can start systematically to investigate different series of similar 
polymers to taylor them in an optimal way for required properties which could easily lead 
to breakthroughs in different branches of technology, 

(see 
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