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Abstract - This lecture is an enquiry into the extent to which we can define 
uniquely local thermodynamic functions in an inhomogeneous system at 
equilibrium. It is argued that this can be done if the length scale of the 
inhomogeneity is macroscopic, but generally cannot be done if the scale is of 
the range of the intermolecular forces, as, for example, in systems with 
interfaces. In these cases the temperature and the ckemical potential remain 
constant throughout the system and the local density is well-defined, but the 
pressure, and so other thermodynamic functions, are not. Recent proposals by 
Baus and Lovett to find a unique form of the pressure are analysed and are 
shown to lead to other, as yet unresolved, difficulties. 

INTRODUCTION 

Thermodynamics is essentially a human science; i t  started with steam engines and went on to 
describe many physical and chemical systems whose size is of the order of a metre. Its laws are 
not truly a theory but a highly condensed and abstract summary of our experience of how such 
systems behave. We have, therefore, no right to expect them to apply to other quite different 
systems, whether extremely large or extremely small. They clearly are inapplicable to the solar 
system or to galaxies. Here gravity is the dominant force; there is no equilibrium, the energy is no 
longer proportional to the amount of material, and so there are no extensive functions. Clausius’s 
famous remark that the energy of the universe is constant but its entropy is increasing to a 
maximum is derived from the behaviour of a closed adiabatic system of constant volume. The 
universe is neither closed in any classical sense, nor of constant volume. Clearly classical 
thermodynamics is not a useful branch of science in cosmology; we have extrapolated too far from 
its human- sized origins. 

The problem of large systems is, however, not my concern here. I wish to examine the other limit; 
that is, how far can we use the concepts of classical thermodynamics in systems that are at 
equilibrium but are inhomogeneous and so, in some sense, small? We can easily generate 
paradoxes here, for if a system is finite, with say N atoms, then we can be sure that it does not 
conform exactly to all the conventional results of thermodynamics. Thus the phase rule does not 
apply exactly to a finite system of a pure liquid in equilibrium with its vapour, for there will be a 
small increase of pressure (of the order of N -1) during the process of condensation. We formally 
avoid this problem by taking what is called the thermodynamic limit, that is, we consider not the 
real finite system but the one that results when we take the h i t s  N + m , V -I m , with ( N  / V) = 
constant. Clearly this hypothetical infinite system is one in which we tacitly agree to neglect the 
effects of the gravitational attraction between its parts that would dominate its behaviour as N 
becomes infinite. Our thermodynamic limit is therefore an abstraction, but nonetheless a 
justifiable one, and one that is useful in practice since our human size of N N 1023 is large enough 
for N -1 to be neglected but small enough to avoid gravitational complications. 

SCALES OF INHOMOGENEITY 

The finite systems we handle in the laboratory are always inhomogeneous. We live in a 
gravitational field, and the walls of the containing vessel adsorb (or maybe repel) the molecules of 
our system. It is easy to see that a weak external gravitational field, as distinct from one 
generated between the constituent parts of the system, poses little restriction on the use of 
classical thermodynamics in a o n e  phase system. The characteristic length we associate with the 
thermal effect of a gravitational field is (IcT /mg ) , where m is the mass of a molecule and g the 
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gravitational field. At the surface of the earth this is 9.0 km, which is clearly lar e on a 

both places. Formally we can say that the thermodynamic potentials, pressure and chemical 
potential, of the Earth's atmosphere, which we may assume to be nitrogen, are functions only of 
the local temperature and density. At a point r 

laboratory scale. Thus althou h there is a substantial difference of atmospheric pressure % etween 
Snowbird, Utah (altitude 2.4 f m) and sea level, we can make thermodynamic measurements in 

and 

If there is more than one fluid phase then the effects of gravity are not so trivial. The 
configuration of a system of liquid and vapour in a closed vessel with no gravitational field can be 
either that of a freefloating spherical drop of liquid or that of all the walls being covered by the 
liquid phase, according to the relative strengths of the intermolecular forces within the liquid and 
between molecules of the liquid and those of the walls. Even a ravitational field that is weak 

produce the familiar system with liquid at the bottom of the vessel, vapour at the top, and an 
interface between them whose instantaneous departures from planarity - the thermal fluctuations 
that we call capillary waves - depend in a subtle way on the size of the system and the stren th of 
the gravitational field (ref. 1). If g = 0 then the amplitude of these waves increases as (1nA 1'2 , 
where A is the area of the interface, and if A-1= 0 , then the amplitude increases as (- lng 9 1'2 . 
Thus we have weak divergence in an infinite system in zero field, but if either A-1 or g is non-zero 
(or both) then the amplitude of the capillary waves is finite, and, indeed, generally small on a 
laboratory scale. Although the amplitude of the capillary waves diverges as g becomes zero (if 
A-1=  0) the surface tension, D ,  remains finite; the corresponding singular term in D is 
proportional to ( g  In g )  which goes slowly to zero as g becomes zero. 

The characteristic length that governs the propagation of capillary waves is called the capillary 
length, lc ; 

compared to the strength of the intermolecular forces changes bot % configurations drastically, to 

lc2 = 2 fJ / 9  (P1 - P g )  I (2) 

where p1 and pg are the (mass) densities of the liquid and gaseous phases. For water at 0 "C at 
the surface of the Earth, lc = 3.9 mm, a length that is small compared with the characteristic 
gravitational length but large compared with the range of intermolecular forces. Since lc is of 
human size, capillary phenomena are easily studied in the laboratory and so it is not surprising 
that, from the eighteenth century onwards, they were one of the first manifestations of the actions 
of intermolecular forces to receive serious quantitative study. 

Thus the thermodynamics of inhomogeneous systems can be handled satisfactorily for bodies with 
the characteristic scales of length that we associate with gravitational fields, although some care is 
needed if there is more than one fluid phase. Matters are less simple if the inhomogeneities with 
which we are concerned are on the scale that we call the correlation length, E , which is about 
1 nm in a simple liquid. This length is a measure of the range of density correlations in a fluid. 
Thus if we know that there is a molecule with its centre at 11 , we can ask what is the probability 
of there being one in a small volume d n  about a point n which is distant from r1 by 
r12 = I r1- nl . If r12 >> ( then this probabihy is p ( n ) d n  , where p (n) is the number density 
at n . At small separations r12 the probability differs from this - it may be larger or smaller - 
and the separation at which these departures first become significant is a rough measure of ( . It 
is not surprising that this length is of the same order of magnitude as the range of the 
intermolecular forces, except in those pathological states we know as critical points, where ( 
diverges to infinity. Many of the natural inhomogeneities that we study in the laboratory have a 
characteristic length that is of the order of magnitude of E ,  since these inhomogeneities are 
themselves the result of the operation of the intermolecular forces. Examples are: 

(1) The thickness of interfaces, whether gas-solid, gas-liquid or liquid-solid, are of the order of 
< .  That is, at distances from the interface large compared with ( we are in the homogeneous bulk 
phases. 

(2) The ratio of surface energy per unit area to bulk energy per unit volume is a length of the 
order of 6 . For liquid argon at its normal boiling point the first is 36 mJ m-2 and the second 1.97 
x 106 J m-3 , a ratio of 0.2 nm. 

(3) When three interfaces meet in a line there is a small contribution to the free energy of the 
system above that accounted for by the bulk phases and by the areas and surface tensions of the 
interfaces. For aqueous This contribution, per unit length, is called the line tension, r .  
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solutions (the only ones for which there are satisfactory measurements) the ratio of r to u is 
about 2 x 10-9 N to 70 mN m-1 , or a length of 0.3 nm. 

(4) The surface tension of a curved surface differs from that of a planar surface by a term of the 
order of ( 6 / R )  , where R is the radius of curvature of the surface and 6 is a small length 
(Tolman’s length) which is hard to determine but which is of the order of 0.5 nm or less (see 
below). 

(5) Cavities in molecularly ordered systems such as zeolites or clathrates generally have widths in 
the range 0.3 - 1.5 nm. Larger cavities would not be stable. 

Thus we can make the generalisation that the natural inhomogeneities that arise from the 
operation of intermolecular forces have a scale of length that is of the order of magnitude of t .  
The question I want to address in this lecture is whether we can define and use consistently local 
thermodynamic functions in systems in which the density is changing substantially over distances 
of the order of 5 . I have already supposed, without argument, that we can define a local number 
density, p ( r ) ,  at a point r , so must first justify this assum tion and then ask if one can extend 
the argument to other densities such as an energy density, q5 rr ) , or a free-energy density, a ( r )  , 
or to the classic trio of intensive thermodynamic functions, the pressure p ( r )  , the temperature 
T ( r )  , and the chemical potential p ( r ) .  

A formal definition of p ( r  ) would start by considering a small volume 6 V ,  which includes r , and 
then observing our equilibrium system many times. On each observation we record the number, 
6N, of molecules with centres in 6V.  We repeat this process with different 6V.  The density 
p ( r )  is defined as the limit as SV-, 0 of the ratio ( S l V ) / S V ,  where (6iV) is the average of 6N 
over a sufficiently long series of observations. (We could instead make one observation of a large 
ensemble of identical systems.) Such a thought-experiment would be difficult to carry out in the 
laboratory, but is easy in a computer simulation, and is unobjectionable as a definition. 

We can extend the argument to any property that depends only on the state of single molecules. 
Thus if we were to count both the number of molecules, 6 N ,  and their translational kinetic 
energies, 6K, then we could define the local temperature, T ( r  ) , by the equation 

( 3 k / 2 )  T ( r )  = Limit [( 6K) / (SiV)] . ( 3 )  
6V+ 0 

This equation holds for any system at equilibrium for which quantal corrections to the 
translational motion are negligible, whatever the local density or its gradients. Moreover, as we 
shall see, T ( r )  so defined is, in fact, a constant, T , throughout the whole system. 

Other thermodynamic properties cannot be defined by the states of single molecules but are 
determined, in part, by the strength and range of the intermolecular forces. The total energy of a 
system is the sum of the translational kinetic energies, 3 k T / 2 ,  any internal molecular energies 
(which we may ignore in this discussion) and the configuration energy that arises from the mutual 
interaction of the molecules and from the interaction with external force fields, including those 
exerted by the walls of the containing vessel. Even if we make the simplest possible assumption 
that the mutual interaction is a function only of the pair separations, Tij , we cannot 
unambiguously ascribe the pair energy to a region of space of dimensions smaller than E . We 
could ascribe half of u (rij) to Ti and half to r j  , but we could, equally plausibly, ascribe it all to 
$(Ti + r j )  . In a homogeneous fluid it would not matter which choice we made since all would 
lead to the same energy density q5 = ( V )  / V ,  the average energy per unit volume. But if the 
point r is at a position where p ( r )  is chan in rapidly on the scale of ( then each arbitrary 
division of u (rij) leads to a different value of Ary  . 

A similar argument can be applied to the force between the molecules since this is the derivative 
du (rij)/drij . Such an argument leads to the conclusion that the stress within an inhomogeneous 
fluid, or its negative, the pressure, is also ill-defined on a scale shorter than that of E . Moreover, 
since the force between a pair of molecules is a vector, while the energy is a scalar, we find that 
the pressure, however defined, is a more complicated quantity than an energy density. It is a 
symmetric tensor of nine components but if the surface has one of the usual kinds of symmetry 
(e.g. a plane, a sphere or a cylinder) then this can be reduced to a diagonal tensor with two 
independent components, e.g. p,, = p ,  and p,, for an interface in the z -  y plane. Figure 1 is a 
sketch that shows how the density p ( z )  and the normal (or z z )  and transverse (or zz and yv) 
components of the pressure tensor change with z through a typical liquid-gas interface. The 
surface tension, g ,  is the integral of the difference of these components, and the surface of tension, 
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Fig. 1. The normal (N) and one form of the tangential ( T )  components of the 
pressure tensor as a function of height, z , through a planar liquid-gas interface. 
The dashed curve is the density, kT p z ) .  The normal component, 

interface and not uniquely determined. 

( z ) ,  is 
constant throughout but the tangenti a!i component, pr ( z  ), is negative in the 

6 , which is the height at which the surface tension acts, is often expressed as 
this difference 

the first moment of 

(4) 
- m  - m  

The uncertainty in the definition of the tensor p is such that the first of these integrals is 
invariant to the choice of definition but the second is not, so that Z;J , so defined, is uncertain by a 
distance of the order of E (ref. 1). 

Although the argument for the lack of exact definition of the energy has generally been accepted, 
that for the pressure has sometimes been resisted. The reasons for this probably lie in the more 
complicated nature of the pressure and in the different status of energy density and pressure in 
conventional thermodynamics. We used to say at one time that pressure was an intensive 
property and energy extensive, so that the energy density was a ain an intensive property. We 

thermodynamic potentials and thermodynamic densities. The former comprise inter alia the 
classical trio of pressure, temperature and chemical potential. The latter comprise the number 
density, energy density, entropy density, mole fractions, etc. The important property of the 
potentials is that they are the same in all phases of a system at equilibrium. Formally we have, 
for the phases a and p ,  

now accept that a more useful distinction is that made by Griffit \ s and Wheeler (ref. 2) between 

where i is here an index that numbers the independent components. There are naturally no such 
restrictions on the densities and so it is the presence of this additional constraint on the pressure 
imposed by eqn 5 and its extension to inhomogeneous systems (see below) that has made the idea 
of ambiguity in the location of pressure less acceptable to some scientists than that of ambiguity 
in the location of energy. [We may have, by chance, the same density in two phases. If that 
density is the mole fraction, we speak of azeotropy ; if it is another density we have what may be 
called a generalised azeotropy (ref. 3).] 
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EQUILIBRIUM IN INHOMOGENEOUS SYSTEMS 

Before we generalise the macroscopic equations for phase equilibrium, eqn 5 ,  to inhomogeneous 
systems it is instructive to look further at some microscopic descriptions. We have seen that these 
have suggested so far that we can ive an exact definition of the local temperature, T ( r )  , but 

onebody function of the same kind as T ( r )  since it is determined in part by the strength and 
range of the intermolecular potentials and so, at first sight, we might expect it to have the same 
uncertainty as p ( r )  . This is, however, not the case. Widom’s potential distribution theorem 
ref. 4) provides a recipe for its measurement and he later proved that p ( r )  , so defined, is, in 

not of the local pressure. What o B the local chemical potential, p ( r )  ? This is clearly not a 

a constant throughout an inhomogeneous system at equiljbrium in the 
constant (ref. 5 ) .  His recipe involves measuring the average value of 
ul(r )  is the change of energy on the instantaneous insertion of an additional 
r .  

We have seen that two of the thermodynamic potentials, T and p , are well-defined, and, indeed, 
constant, throughout an inhomogeneous system, whilst the third, the pressure tensor, appears to 
be ill-defined at a molecular level. The macroscopic equations of equilibrium that correspond to 
eqn 5 in an inhomogeneous system are 

V p ( r ) = O  , V T ( r ) = O  and V -  p ( r ) + p ( r ) V v ( r ) = O  

where II ( r  ) is the external potential at point r which includes, for example, the gravitational 
field and the field of force generated by the walls of the containing vessel. All three of these 
equations have vectors on their left-hand sides, but they are of very different character since p 
and T are scalars and p is a tensor. If the gradient of a scalar is everywhere zero then the scalar 
is a constant throu hout the system. But, in a region in which ( r )  is negligible, the fact that 

components of p are constant. In the example shown in Fig. 1 we see that the normal component 
is a constant but the tangential component is not. 
This differentiation of pressure from its two fellow potentials is reflected in other related 
properties. The three conserved quantities at elastic molecular collisions are mass, energy and 
momentum. The first two are scalars and the third is a vector, or an axial vector if the 
momentum is angular, -but rotational motion of molecules is ignored in this lecture. If the 
conditions of equilibrium, eqn 6, are violated the rates of transport of mass, energy and 
momentum are governed by the transport coefficients of diffusion, thermal conductivity and 
viscosity. As is well-known, the third is again more complicated than the first two, having, in 
general, shear and bulk components. These parallel properties are set out in Table 1. 

the vector formed % y the gradient of the pressure tensor is zero does not imply that all the 

TABLE 1. The three conserved quantities and the properties related to  each. 

Conserved Vector Transport Condition of 
quantity character property equilibrium 

mass scalar diffusion V p = 0 + p = constant 

energy scalar thermal conductivity V T = 0 + T = constant 

momentum vector viscosity V . p = 0 j4 p = constant 

We consider next whether the presumed uncertainties in the definitions of the local densities or of 
the local pressure have any observable consequences. No problems arise with the energy density 
or, by extension, with other thermodynamic densities that may be presumed to behave similarly, 
such as the local densities of enthalpy, entropy, and the free energies, since they also depend on 
the strength of the intermolecular potential. I know of no method of measuring such energies with 
a precision sufficient to differentiate between any of the possible definitions we might use. With 
the pressure the position is not so clear. The range of definitions is restrained by the condition of 
mechanical equilibrium,,eqn 6, and by the symmetry of the system. Nevertheless there is still a 



a78 J. S. ROWLINSON 

lar e, and generally infinite number of possibilities, as has been shown by Schofield and Henderson 
, at a planar 

interface are those associated with the names of Irving and Kirkwood (ref. 2 $?distributed the 
force evenly along the line joining a pair of interacting molecules, and arasima (ref. 8) who 
placed it on a trajectory of two straight lines joining the molecules, one parallel and one 
perpendicular to the interface. The first is, perhaps, the more natural; the latter leads to a 
simpler expression. Both give the same surface tension (as they must, since i t  is a measurable 
property) but they differ in their prediction of the height of the surface of tension, z s .  Computer 
simulation of the liquid-gas surface shows that the surface associated with Irving and Kirkwood’s 
definition lies about half a molecular diameter (say 0.2 r )  further into the liquid than that 
associated with Harasima’s definition (ref. 9). It is, however, hard to think of a method by which 
this difference could be detected directly, even in princi le. The one problem where it might 
matter is in the change of surface tension with (spherical)) curvature. The distance 6 = z, - z;s , 
where Ze is Gibbs’s equimolar surface and where z is increasing in the direction from liquid to  gas, 
is known as Tolman’s length (ref. 10). It governs the change of surface tension with the radius of 
a drop, R , according to the equation, 

re 6). The two most widely used definitions of the transverse component, ( f 

= u r n + ] .  (7) 

There are exact expressions for uR and u, in terms of the direct correlation function in the 
interface (ref. ll), and so, in principle, it should be possible to determine 6 .  In practice, 
statistical mechanics is not sufficiently well- developed for this programme to be carried out, 
except in the case of a particular model in which the discrimination between the different 
definitions of z, disappears (ref. 12). 

RECENT DEVELOPMENTS 

The position I have set out above is, I believe, an accurate representation of the consensus of 
opinion that has been hammered out over the last fifteen years or so. This consensus has recently 
been challenged in an important series of papers by Baus and Lovett whose view I shall try to 
describe correctly in this last part of the lecture, but with which I do not always agree. 

In their first papers (ref. 13,14) Baus and Lovett set out to establish a unique form for the 
pressure tensor by adding a second condition on its form that supplements the condition of 
equilibrium (eqn 5). They argue as follows. Consider a small deformation of the system so that 
each point r is moved to r + s ( r  ) , where the vector s ( r  ) is everywhere a small displacement. 
The change of density that is caused by this deformation is 

@ ( r )  = - v .  [p ( r ) s ( r ) l  , (8) 
and the corresponding strain tensor, S(r ) is the symmetrical form of the gradient of s ( r  ) , 

S ( r )  = 3 [ V  s ( r )  + (V SO.) )+l  , (9) 

where the dagger denotes the transpose of the tensor. The six components of the strain tensor do 
not overdetermine the three of the vector displacement since they have to satisfy an additional 
‘condition of compatibility’ , as was first shown by St. Venant in 1864 (ref. 15). This condition is 

t 
V x  p x  S ( r ) ]  = 0 . 

The change of free energy that results from this strain is 

where the integration is over the whole system, including the boundary walls. 
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Baus and Lovett impose St. Venant's condition not only on the strain tensor but also on the stress 
tensor, and so ensure that the stress (or its negative, the pressure tensor) is everywhere uniquely 
determined. It becomes, however, a non-local property ; that is, its value at a point r is 
determined not only by the state of the fluid at r , and within a correlation length's distance of 
this point, but by the state of the whole system. There seems to be no compelling reason to apply 
St. Venant's condition of compatibility to the stress (or pressure). It is, I believe, a hypothesis of 
which Baus and Lovett are exploring the consequences. 

At a planar interface, St. Venant's condition requires that dapT z)/dZa is zero and, since pT(- m) 

surface tension is also zero (see eqn4). Baus andLovett note, however, that the non-local 
character of their pressure tensor leads to a contribution to the free energy from eqn 12 that arises 
from the strain where the interface meets the boundary walls of the system, and that this change 
of free energy is just that obtained in the usual (Kirkwood-Buff) calculation of the surface tension 
from the stren th of the intermolecular forces. This leads also to the same result for the position 

Kirkwood. Baus and Lovett's pressure tensor, although it may be physically unattractive, does 
not lead to unacceptable conclusions for a system of planar symmetry. 

If, however, we have a spherical drop of liquid at the centre of a spherical vessel then the interface 
never touches the walls. The drop can be maintained there by a weak external potential that acts 
only on the liquid near the centre of the drop and which can legitimately be ignored in 
determining the state of the system. The condition of mechanical equilibrium, eqn 6, becomes, for 
a spherical system, 

= p1 = p g  = pT(+ m) , this seems to imply that p is everyw 6 ere a constant, and so that the 

of 6 ,  the sur P ace of tension, as that found from the form of the pressure tensor of Irving and 

and St. Venant's condition would require also that (ref. 16) 

where 1 is the unit tensor and 1 is a moment of inertia tensor, 

I = '2 1 - r r ,  

and 

The conditions expressed by eqn 13 and eqn 14-16 require that 

We know, however, that at the centre of the drop of liquid the normal and tangential components 
are both equal to the scalar pressure p l  , and outside the drop they are both equal to pg . For a 
drop of radius R we have (Laplace's equation) , 

pl-pg = ~ u J R  , (18) 
so that the imposition of St. Venant's condition seems again to lead to a vanishing of the surface 
tension without, in this case, a contribution from the intersection of the interface with the 
boundary walls. They have acknowledged that the spherical problem needs further study (ref. 17). 
Baus and Lovett's form of the pressure tensor is an unambiguous but non-local function. It is not 
easy to  form a physical picture of it and it has yet to be shown to be applicable to systems more 
complicated than those with a planar interface. It is, moreover, essentially a mechanical solution 
to the problem and does not directly resolve the question of how to define uniquely local 
thermodynamic functions. In their latest paper (ref. 18) they address this point and claim that 
they can construct a scalar function that has all the thermodynamic properties required. This 
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function, p ( r )  , satisfies the condition of mechanical equilibrium, which now takes the simpler 
form, 

v p ( r ) + p ( r ) V  ‘ U ( f )  = 0 , (19) 

and also serves as the negative of the density of Gibbs’s grand potential, !l ; 

!l = - d r  p ( r )  . s 
In a homogeneous system fl is - pV so eqn 20 requires that p ( r  ) reduces to the conventional 
scalar pressure within each homogeneous hase of the system. Lovett and Baus’s claim extends 
only to systems for which V v ( r )  x V p (ry vanishes everywhere, which is true for all cases with 
planar, spherical or cylindrical symmetry. It would not be true for more complicated systems, 
such as a fluid adsorbed into the pores of a zeolite. 

If Lovett and Baus’s claim is accepted then they have solved the problem of defming uniquely the 
local thermodynamic functions since we could construct a Helniholtz freeenergy density, a ( r )  , 

From this we can obtain an energy density by using the Gibbs-Helmholtz equation, an entropy 
density by subtracting energy from free energy, etc. 

The claim may, however, not be sustainable since there is one model system for which we can 
calculate the function p ( r  ) that satisfies eqn 19 and its integral does not give the grand potential 
when inserted into eqn 20. This model (ref. 19) is somewhat artificial but this lack of realism is 
no bar to using it as a test-case. It comprises molecules between which there is a repulsive 
intermolecular potential such that, at a fixed temperature, TO, the Boltzmann factor of the 
potential has a Gaussian form ; 

A set of such molecules is confined to a parabolic potential well, 

W ( T )  = +/La , (23) 

where T is the distance from the origin of the coordinate sjstem. For this assembly we can 
calculate the local density p ( T  ) and the virial coefficients ref. i9). Preliminary calculations show 

at the level of the second virial coefficient. Until this counter-example is explained satisfactorily I 
believe that we should not accept that the existence of a unique thermodynamic scalar pressure, 
p ( r )  , has been established. 

A second system in which we can make explicit calculations is an assembly of molecules in a 
spherical cavity of dimensionality, d . A scalar pressure within such a cavity satisfies eqn (19) 
which can be integrated to give 

that the function p ( r )  that satisfies eqn 19 does not satis I y eqn 20 ; the discrepancy appears first 

m 

= - t T [  ds [p ( s )exp(v ( s ) /kT) ]  (d/ds)  [exp(-v(s) / tT)]  . (24) 
T 

If, as Lovett and Baus claim, this pressure is also the density of the grand potential, fl , then we 
can obtain their grand potential by integration over the cavity ; 

m 
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where vd is the volume of a d -dimensional sphere of radius 1" ; dVd = 4ar2 d r  , if d = 3. If we 
substitute p ( T )  from eqn (24) and integrate by parts, we have 

If the cavity has hard walls and if its radius is R , this gives 

where pw(R ) is the density at the wall, since we know that ,$r ) e 
wall even although both factors are discontinuous there. Now 

)lkT is continuous at the 

( 2 8 )  T>P . kTp , (R)  = - ( a n / a v d )  

This equation has been derived explicitly for d = 1 (ref. 20) and for d = 3 (ref. lo ) ,  and certainly 
holds for all other dimensions. So 

If R,, is to be identified with n then this differential equation has the solution 

= Vdfi(T,P)  = -P,(T,P) vd 2 (30) 

where fi , the constant of integration, can be identified with the negative of the pressure in an 
infinite system at the same T and p , if n is to behave correctly in the thermodynamic limit. But 
we know that has the form 

where fi is a function that contains all the information about the surface contributions to fl . If 
d = 3 , fi is three times the surface tension at the wall. If d == 1 , then vd = 2R ) and the second 
term in eqn (31) is a constant, 2 fi( T , 1) , which is known explicitly for hard-rod molecules 
(ref. 20) .  Lovett and Baus (ref. 18) claim only to determine n to within a constant but we see 
here that this constant contains all the interesting part of n in an inhomogeneous system. 

CONCLUSION 

We have seen that inhomogeneities of macroscopic scale len th are beni n; they do not prevent us 

variables. But if the scale of length of the inhomogeneity is of the order of the correlation length 
then we can define uniquely only a local number density and the two potentials, temperature and 
chemical potential, that are uniform throughout the system. There have been several attempts to 
define a wider class of local functions. Raylei h and van der Wads both roposed that local 
functions be expressed in terms not only of p (T! , but of its radient IV p ( ~ 7 1  a , but they knew 

Baus and Lovett have attempted to define the pressure uniquely. If their results are accepted 
then unique definitions of other thermodynamic functions follow at once. There are, however, 
strong arguments to show that their results do not hold in general, but that they may be 
maintainable for systems with planar symmetry, although even in those cases they may not be 
easy to interpret physically. 

defining local thermodynamic functions that are unique f unctions o P other well-defined local 

that they were generating an approximation, not an exact de 8 nition (ref. 21,22). More recently, 
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