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Abstract 
It has been shown experimentally that the dependence of  
the logarithm of the ratio of molar volumes of the pha- 
ses coexisting at equlibrium on the entropy of the pha- 
se transition has more general character than familiar 
dependence of the logarithm of gas phase pressure on 
the re@procal temperature. The presence of common li- 
quid - vapour, crystal - vapour and adsorption lays - 
vapour coexistence curve for a group of  substances has 
been established. The result has been analysed from 
standpoint of convertion degrees of freedom of the mo- 
lecules on passing from gas phase to the surface of 
condensed phase. 

NEW RELATION BETWEEN PHASE EQUILIBRIUM PARAMETERS FOR A ONE- 
COMPONENT SYSTEM 

The equilibrium between a gas phase and a condensed (liquid or solid) 
phase is described by the rigorous thermodynamic relation 

V"  dp - V '  dp = S" dT - S' dT, (1 1 
where V" and S" are the molar volume and entropy of the gas phase, v '  
and St are the corresponding values for the condensed phase, p is the 
pressure, and T is the temperature. Far from the critical tempera - 
ture, vl' v t  and the second term in Eqn. (I) is neglected. After 
substituting oft = RT/p and integrating, the familiar temperature va- 
riation of the equilibrium pressure p is obtained: 

In p = - AWRT + A,  (2) 

where A H  = (S'l - S t ) . T  is the enthalpy of  phase transition, assu- 
med to be independent o f  T. Each pure substance is characterised by 
definite values of AH and A. The relation 

In (vfl/v') = f ( AH/RT), (3 1 
having a unitary property as regards the description of the phase 
equilibria of different groups of pure substances, is examined in the 
present study. For a narrow temperature range, Eqn. (3) can be for- 
mally expressed analytically on the basis of Eqn. (1) using the acti- 
vity coefficient J' for the condensed phase: 

v '  dp = RT d In J c' = - RT d In 8 v ' ,  (4) 

where c = l/vr is the concentration of the test substance. On sub - 
stituting p = RT/v" and Eqn. (I), rearranging, and integrating in the 
temperature range where the dependence of AU and $ on T may be 
neglected, we obtain 

In (v1*/vC) = AU/RT + I3 = AH/RT + B - I. (5 1 
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where 4 U  = A H  - RT is the change i n  in te rna l  energy i n  the 
phase t r ans i t i on  and B is a constant. 

Fig.1 i l l u s t r a t e s  the general form 
of the r e l a t ion  between In (v"/v') and 
d H / R T  (the phase equilibrium curve) 

3 10- of the t e s t  substance, f o r  example, 
water. It passes through the or ig in  
of coordinates s ince a t  the c r i t i c a l  
temperature V" = V '  and 4 H = 0. For 
the l iqu id  s t a t e  the ab curve is  
s l i g h t l y  concave €0 the A H/RT axis. 
A t  the t r i p l e  point (the bc l i n e ) ,  

varies from the volume of the l iqu id  
phase a t  the point b t o  that  of the 

Fig. I crys ta l l ine  phase a t  the point c . 
The intermediate values of the volume 
of the condensed phase 0 '  and of the 
enthalpy AH' /1n(vt1/vt) and AH/RT 

respectively / along the bc l i n e  are  determined by the composition 
o f  the condensed phase, consisting o f  a mixture of l iqu id  and cry- 
stals. For the c rys ta l l ine  s t a t e  (cd l i n e ) ,  the phase equilibrium 
curve is nearly l inear .  
We shal l  consider the new properties o f  Egn. (3) compared wi th  the 
familiar Eqn. (2). The introduction of the molar volume of  the 
condensed phase v t  and use the ra t io  AH/RT instead of  1 /T  reveal 
cer ta in  general properties of two-phase systems a ich  a re  inde- 
pendent of the individual character is t ics  of the substances. 
Fig. 2 i l l u s t r a t e s  the l iqu id  - vapour phase equilibrium curve f o r  
a ser ies  of  pure substances. Line 1 corresponds t o  the condition 
where both  phases are  idea l  gases. In this  case, the heat of the 
t r ans i t i on  4 H  is  equal t o  the heat of  the isothermal compression 
of the idea l  gas A H = RT Intv"/V'). It describes the l imit ing 

case of the coexistence of  phases. In 
the region above l i n e  1, there a re  no 
phase equilibrium l ines  f o r  r e a l  
substances. The phase equilibrium curve 
f o r  helium (curve 6) is  close t o  
l i n e  1 between 2.00 and 5.20 K. It 
is remarkable that ,  near the A - tran- 
s i t i o n  the phase equilibrium curve 
touches the l imit ing l i n e  1. The 
subsequent curves represent a combi- 
nation of the l i qu id  - vapour phase 
equilibrium l ines  f o r  different  pure 
substances which are  close t o  one 
another (within 2 2%). Line 2 combines 
the curves f o r  a lkal i  metals. For 
comparison with other substances, Fig.2 
present data f o r  metals at high temge- 

ra tures ,  f o r  example, f o r  l i thium i n  the range f r o m  800 t o  2000 K. 
The phase equilibrium cuz've f o r  l iqu id  hydrogen (curve 5) approaches 
closely t o  l i n e  2. Curve 3 combines the curves f o r  neon, argon, 
krypton, xenon, methane, nitrogen, oxygen (from below upwards i n  
sequence) a t  the melting point the argon group). Curve 4 describes 
a wider range of  substances f o r  different  temperahures Ic (from below 
upwards): n-octane (473 K ) ,  a-heptane (433 K ) ,  sulfur dioxide 
(323 K), carbon dioxide (216 K), f luorine (368 K ) ,  acetylene (192 K), 
naphthalene (493 K) , water (383 K) , 'dif lurodichlorornethane (203 K) , 
benzene (280 K ) ,  ammonia (200 K ) ,  flurotrichloromethane (213 K) 5 (the 
water group), It is s t r ik ing  that common group equilibrium l ines  f o r  
these substances are observed not only f o r  the l iqu id  - vapour system 

- 
d f o r  -different s t a t e s  of  aggregation 

r'o 20 30 the volume of the condensed phase 
L1M/RT 

f0 20 30 
4/-l/RT 

Fig. 2. 
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but a l s o  f o r  the c rys t a l  - vapour system. Fig. 3 presents the phase 
equilibrium curve f o r  the  c rys t a l l i ne  s t a t e  of a group o f  substances 
corresponding t o  curves 3 and 4 i n  Fig. 2. .Symbol8 designate the  
values of  I n  (vl/v') and A H/RT at the melting point. On curve 1 
( in  sequence from below upwards): the  neon, krypton, xenon, argon, 
nitrogen, oxygen; on curve 2: carbon dioxide, f luor ine ,  sulfur 
dioxide, benzene, ammonia, chlorine,  water. The enthalpy of subl i -  
mation was determined as the sum of the enthalpies of the  l i q u i d  - 
vapour (heat of evaporation) and l i qu id  - c rys t a l  (heat o f  fusion) 
t rans i t ions .  Similar common phase equilibrium curves a re  characte- 
r i s t i c  also of the a l k a l i  metals. 

C v 

AU/k?T 

Big. 3 .  

j5 20 25 
AH/@ r 

Fig. 4. 

We s h a l l  consider the physical nature of  the uni tary property of the 
phase equi l ibr iun curves noted above. The r e s u l t s  have been analysed 
from the  standpoint of the thermodynamic theory o f  the crystal-  
vapour equilibrium, developed previously (Ref. I), i n  which the 
dependence of  I n  (vll/vf) on AH/RT invo1V.s the pa rme te r  n - 
the number of t rans la t iona l  and ro t a t iona l  degrees o f  freedom of 
the molecule converted t o  vibrat ion on gassing f rom the gas phase 
t o  the surface o f  the so l id .  The following equation was obtained 
f o r  t he  c rys t a l  - vapour equ i l ib r im:  

In (v"/v *) = H/RT - (n/2) In  ( A H/RT - 1 + (d2) + 

+ (n/2))t I n  ( # + 1 1 ~ 2 )  - ( 8 n/2) - I, (6) 

where X 
values of v t ,  v", AH, and n is corrected. For the  majority 
of  systems investigated,  I(= 2. 
Big.4 i l l u s t r a t e s  the deviations o f  the  experimental values (sym- 
bols) from the c rys t a l  - vapour phase e q u i l i b r i m  curve (zero l i ne )  
calculated by Eqn. (6): (1) argon; (2) krypton; (3) xenon; (n = 3 ) ;  
(4) carbon dioxide; (5) water (n = 6). The experimental value o f  v'l, 
v t ,  and AH a t  d i f f e ren t  T were found from tab les  ( for  water and 
carbon dioxide) o r  were calculated (argon, krypton, xenon) by an 
equation o f  type (2) with the recomraended values of A H  and A f o r  
a def in i te  temperature range. Big.4 shows that the  maximum deviation 
of the theore t ica l  values from the experimental ones f o r  A H / R T  
between 10 The accuracy of t he  experimental data 
of d i f fe ren t  workers does not exceed 2 2% according t o  estimates. 

is the mul t ip l ie r  determined when the  equation with known 

and 25 is ,* 4%. 

EQUILIBRIUM BETWEEN THE ADSORPTION LAYER AND THE GAS PHASE 

Application o f  this method t o  adsorption systems makes i t  possible 
t o  follow qual i ta t ive ly  the s t a t e  o f  the  nolecules at the in te r face .  
Systems with typ ica l  s o l i d  adsorbents were examined: graphi t ised 
thermal black (GTB), zeo l i tes ,  act ivated charcoals, and s i l i c a  gels .  



2148 G. I. BEREZIN 

The p r i n c i p a l  d i f f i c u l t y  cons i s t s  i n  determining the  m o l a r  volume of 
the adsorbed substance. It i s  ca lcu la ted  by the  equation 

v '  = W/a, (7) 
where W i s  the  volume of the  adsorption space and the degree of 
adsorption. For z e o l i t e s ,  i t  can be assumed that  W is equal t o  
the  volume of the l a rge  c a v i t i e s  ca lcu la ted  from X-ray d i f f r a c t i o n  
data. The volume of t he  micropores i n  porous adsorbents can be 
determined approximately by Dubinin-Radushkevich equation i n  the  
theory o f  the  volume s a t u r a t i o n  of micropores (TVSM). It i s  more 
d i f f i c u l t  t o  determine the  adsorption spase f o r  non-porous adsor- 
bents with an open sur face .  To a f irst  approximation, we assume 
t h a t  the  volume of  the  f i r s t  adsorption l a y e r  is  equal t o  the  
VoXume of  t he  l i q u i d  substance being adsorbed: 

'1 am* w =  
where am is 
and v1 is the molar volume of the  l i q u i d  substance being adso- 
rbed. The molar  volume of t he  adsorbed substance can be found by 
s u b s t i t u t i n g  the  expressions f o r  W i n  Eqn. (7). 
We shal l  consider i n i t i a l l y  adsorbents wi th  a homogeneous po ros i ty  
( z e o l i t e )  and a homogeneous sur face  (graphi t i sed  thermal black).  The 
molar volume of  the adsorbate i n  the N a A  z e o l i t e  was determined 

black wi th in  the  monolayer w a s  ca lcu la ted  by Eqn. (8) (a, was 
determined f r o m  the molecular a r ea  ciJ according t o  l i t e r a t u r e ,  
data).  Figure 5 i l l u s t r a t e s  t h e  equilib!t?ium curves f o r  carbon 
dioxide adsorbed on the  NaA z e o l i t e  (I) a t  300 K and on graphi te  (11) 
at 193 K (Reference o f  o r i g i n a l  experimental works used here  m a  be 
found i n  Ref. 1 ). The dashed curves were ca lcu la ted  by Egn. (63 f o r  
d i f f e ren t  values of n ( ind ica ted  aga ins t  the curves) and X = 2.7. 
This value of  ?( was obtained when Eqn. (6) was adjusted for consi- 
stency with data f o r  c r y s t a l l i n e  carbon dioxide with n = 5 ( l i n e  cd 
i n  Fig. 5). The continuous l i n e s  a r e  the phase equilibrium curves 
f o r  carbon dioxide; ab - l i q i u d  - vapour; cd - c r y s t a l  - vapour. 
The dependence o f  the  d i f f e r e n t i a l  heat o f  adsorption q on the  
degree o f  s a t u r a t i o n  o f  the c a v i t i e s  i n  the  z e o l i t e  ( I )  and o f  the  
surface o f  g raphi te  (11) i s  indica ted  i n  the  upper f i g u r e  (q = AH). 
It i s  s t r i k i n g  that, over the  e n t i r e  region inves t iga t ed  ( from 1 
t o  9 molecules per cav i ty  o f  NaA z e o l i t e ) ,  the equilibrium curve f o r  
adsorbed carbon dioxide is loca ted  near t he  l i n e  with n = 4. For the  
l i n e a r  carbon dioxide molecule, having f i v e  degrees of freedim i n  the  
gas phase, the r e t e n t i o n  o f  one degree o f  t r a n s l a t i o n a l  o r  r o t a t i o n a l  
freedom corresponds t o  t h i s  value of n when the molecule en te r s  a 
cavi ty  o f  the  NaA z e o l i t e .  Fig.5 a l s o  presents  the  equilibrium 
c a v e  f o r  carbon dioxide adsorbed on the sur face  of g raph i t i s ed  
thermal black. The curve begins with values of n c lose  t o  uni ty  
and, as the  degree o f  adsorption increases ,  n increases.  A t  the  
m a x i m u m  i n  the heat o f  adsorption (the upper pa r t  of Fig. 51, i t  
reaches the  same l i n e  w i t h  n = 4 as f o r  t he  carbon dioxide/ NaA sy- 
stem. It i s  s t r i k i n g  that a s i g n i f i c a n t  d i f fe rence  between the hea ts  
of adsorption o f  carbon dioxide on graphi t i sed  thermal black and the 
NaA z e o l i t e  (shown i n  upper p a r t  o f  Fig. 5) and between the  tempe- 
r a t u r e s  does not a f f e c t  t he  value n i n  the region o f  complete 
s a t u r a t i o n  o f  the volume of t he  monolayer on graphi t i sed  thermal 
black and o f  the z e o l i t e  c a v i t i e s .  
We shall consider i n  g r e a t e r  d e t a i l  the curves f o r  t he  p a r t i t i o n  o f  
the  adsorbed substance when a monolayer is  formed on the  sur face  
o f  g raphi t i sed  thermal black. As i n  Fig. 5 a family of equilibrium 
curves obtained by Eqn. (1) f o r  = 2 and varying i n t e g r a l  va- 
l ues  o f  n is i l l u s t r a t e d  i n  Fig. 6. As shown before,  t he  l i n e  
with n =3 and 6 correspond t o  the  c r y s t a l l i n e  s t a t e  o f  two groups o f  

t he  mass o f  the  adsorbed substance i n  the  monolayer 

by Eqn. (7) using W = 0.3 cm 3 g-' and that on graphi t i sed  thermal 
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substances: the noble gases (n = 3)  and the "water groupf1 (n = 6). 
The symbols denote the experimental values o f  I n  (vl'/vt) and AH/RT 
recalculated by Eqn. (8) from data f o r  the adsorption isotherm and 
heat of adsorption o f  va r ious  substances on raphi t ised thermal 
black: (a) xenon (162 K ) ;  (b) argon ( 77.8 X$; (c) krypton (77.8 K); 
(d) n-hexane (298 K). 

c v 

20 

15 

10 

aH/RT 
Fig. 5 

1 

1.5 20 2s 

oU/R r 
Fig. 6 

The dependence of mono- 
layer  is shown schematically i n  the upper par t  of  Fig.6. After the 
completion of a continuous monolayer, the heat of adsorption dimi - 
nishes t o  a value close t o  the heat of condensation o f  the normal 
l iqu id  (dashed l i ne ) .  The equilibrium curves f o r  argon, krypton and 
xenon i n  Big.6 have a charac te r i s t ic  shape. They begin with values 
of I n  (vtl/vl) and AH/RT close t o  the corresponding values i n  the 
Henry region f o r  n = 1. With increase i n  concentration, the 
equilibrium curves move in to  the region o f  high values of n and at 
the m a x i m u m  heat o f  adsorption (upper Figure) reach the l i n e  
a = 3 .  The extent of  t h i s  sect ion i s  different  f o r  each adsorbate 
and i s  highest f o r  krypton. The sect ion f o r  argon and xenon is 
appreciably shorter.  The curve f o r  n-hexane adsorbed on graphi - 
t i s ed  thermal black a t  298 K has a s imilar  shape. It begins near the 
l i n e  with n = 2 and then s h i f t s  towards higher n. In the region o f  
the m a x i m u m  heat of adsorption, i t  reaches the l i n e  with n = 6, cor- 
responding t o  the c rys ta l l ine  s t a t e  and on fur ther  increase i n  the 
degree of adsorption it  coincides with t h i s  l ine .  
Thus the examples presented show tha t  i n  a continuous monolayer the 
adsorbed molecules on the surface of  graphitise'd thermal black are  
f u l l  localised.  After the formation o f  the monolayer and t r ans i t i on  

low values n (not shown i n  Fig. 6). 

q/RT on the degree of saturat ion of  the 

with 

t o  t h e second layer ,  the equilibrium curve shifts in to  the region o f  

ADSORPTION ON INHOMOGENEOUS ADSORBENTS 

Vulkanl* carbon black, AC and CC activated charcoals, f i na ly  porous 
s i l i c a  gel KSK-2, and non-unifermly porous s i l i c a  ge l  with a dehyd- 
ra ted  surface (NPS) were assigned t o  such adsorbents. The adsorption 
o f  benzene on these adsorbents has been investigated. The molar 
Voltme of the adsorbed benzene v '  on activated charcoal by Eqn. (7) 
f o r  published values of W. For  the remaining adsorbents, the value 
of was determined i n i t i a l l y  and the volume v 1  was calculated 
f o r  a 4 an by Eqn. (8); i n  the region a>  am it was assuraed 
that 7 '  = V+;P Fig. 7 and Fig. 8 presents the equilibrium curves 
f o r  benzene adsorbed on these adsorbents. They are  located near 
two equilibrium l ines  - f o r  the l iqu id  ( l ine  ab ) and crys ta l l ine  
( l ine cd) s t a t e s .  
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AH/RT 

Fig. 7 

The equilibrium curves f o r  benzene adsorbed on carbon adsorbents a re  
grouped along the l i n e  f o r  the l iqu id  s t a t e .  On activated charcoals 
AC (2) and CC (1) i n  the region close t o  saturat ion,  there  is  a 
m a x i m u m  on the heat of  adsorption curves (upper par t  of Fig. 7) 
associated with the evolution of  heat on decreasing the area o f  the 
adsor  t i on  layer  L. gas interface.  The equilibrium curves for benzene 

charcoals AC and CC are  therefore r e s t r i c t ed  t o  the 
region extending from low coverages t o  the point of i n f l ec t ion  indi- 
cated by an arrow,  The adsorption on the non-porous carbon black 
"Vulkan" (3) has no heat of adsorption m a x i m u m  and a l l  
ranging from low degrees o f  adsorption t o  saturat ion,  a re  represented 

The equilibrium curves f o r  benzene adsorbed on carbon 

w i t h  increase i n  AH/RT pass t o  the region o f  cooled and supercooled 
benzene. Formally, i t  is  possible t o  determine the temperature of 
supercooled benzene corresponding, f o r  example, t o  the extreme point 
f o r  adsorbed benzene (.+ 200 9). The disposi t ion of the equilibrium 
curves f o r  benzene adsorbed on carbon adsorbents along the l i ne  f o r  
the l iqu id  s t a t e  i s  probably responsible f o r  the temperature inva- 
riance o f  the charac te r i s t ic  curve i n  WSM. 
The benzene adsorbed on s i l i c a  adsorbents: f i n e l y  porous s i l i c a  ge l  
,5337 (2), coarsely porous s i l i c a  gel KSK-2 (1) and non-uniformly 
porous s i l i c a  ge l  with a dehydrated surface (NPS) (3) is  i n  a 
d i f fe ren t  s t a t e  (Fig. 8). The heat of adsorption on these s i l i c a  
gels also passes through a m a x i m u m  close t o  saturation. As f o r  the 
carbon adsorbents, sec t ios  ranging f r o m  low coverages t o  the 
beginning o f  the maximum were therefore selected here. It is  s t r ik ing  
that i n  the region o f  low degrees of adsorption (hundredths of a 
monolayer f o r  ICSK-2 and NlpS and up t o  the beginning of the hys- 
t e r e s i s  loop f o r  the s i l i c a  gel S-337), the equilibrium curve coin- 
cides with the l i n e  f o r  crystals .  With increase i n  the degree of 
adsorption, the equilibrium curve f o r  adsorbed benzene coincides with 
the l i n e  f o r  the l iqu id  and approaches point A on saturation. The 
region between the l iqu id  and crys ta l l ine  s t a t e s  is  occupied by ben- 
zene adsorbed in the first layer  on the surface of the s i l i c a  gels  
KSK-2 and NPS. Thrts the above thermodynamic analysis o f  the s t a t e  
of  the adsorbed substance on the surfaces of s o l i d  adsorbants of 
different  chemical nature and with d i f fe ren t  geometries leads t o  
conclusions which do not conf l ic t  with modern ideas about physical 
adsorption and about the s t a t e  of  molecules on the s o l i d -  gas 
interface.  

adsor g ed on the 

in adsor  ents 7 *  begin on the l i n e  f o r  the l iqu id  s t a t e  a t  the point A and 

points,  
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