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Abstract- This work is devoted 1o the authenticity examination of pore size distributions which are
result of some conventional interpretation techniques for independent pores. The present
investigation is based on computcr cxpcriments simulating adsorption, capillary condensation,
desorption, mercury intrusion and some other processes in modcl porous lattice made up of a large
number of spheroidal-shaped voids pasted together by toroidal-shaped necks. Special attention has
been paid to plausibility of simulating processcs. In particular, the cooperative capillary condensation
inside the group of neighbouring voids has been analyzed in terms of thermodynamics and molecular
physics. The results of long-duration numerical experimenis ( adsorption isotherms, mercury
intrusion curves, etc.) have been proccssed with the help of conventional techniques calculating
independent pore size distributions. Sizc distributions obtained this way have been compared with
those generated for corresponding modci porous solids, the reasons of mismatches have been also
analyzed. Conclusions concerning with morc reliable interpretation of results obtained by traditional
techniques have becn made.

INTRODUCTION

To solve nnmerous problems, which arisc from preparation, development and investigation of catalysts, supports and
adsorbents the information on the pore volumc and surface arca and corresponding pore size distributions (PSD) is
needed. Usually, the standard adsorption-capillary and mercury porosimetry techniques arc used to get such
information. However, obtaining of cnd-point quantitative characteristics by these techniques is based on excessively
simplified model vizualizing of porous space as the group of independent pores exhibiting the simplest geometric
configuration (e.g., cylinders, slit shape pores, practically closed spherical voids, or cavitics between regularly packed
spherical particles). guch simplifications neglecting the spatial connection between clements of model porous space
cause the distortion of quantitative ratious describing the model capillary condensation, desorption, mercury
penetration, etc. in hole porous space. The rolc of this problem becomes more evident when one looks at the plot of
Dullien et al. ¢ref. 1) (see Fig.1 in this paper), which was published later in the well known book by Greg and Sing (ref.
2). This figure shows the frequency (density) function of volume porc size distribution of onc and the same porous
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PORE DIAMETER micrans In the presented work, the problem under consideration have
been analuzed as applied to PSDs, which have been calculated
from nitrogen adsorption and desorption isotherms, mercury

Fig. 1. Figure9 from ref. 1. penetration curve and random chord length distribution
obtained during corresponding computer cxperiments for one
and the same model porous solid.
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BRIEF REVIEW OF THE PROBLEM

Atthe present moment one can cast doubt on most of theoretical suggestions forming the basis of yuantitative estimation
of PSD. For example, several years ago a number of works was published (refs. 3 - 10) where conclusion of De Boer et
al. (ref. 11) that Kelvin equation is a too rough approximation (for estimation of critical relative vapor pressure at which
mesopore spontaneous filling occurs) was confirmed. Morcover, density of layer adsorbed on the pore wall as well as
condensate density after capillary filling considcrably increasc with cnhaucement of the relative vapor pressure, P/ P,
in the system. The last factor is not taken inlo consideration in conventional calculation techniques either, though
recently thea gproach was published accounting for the abovc-mentioned factors in terms of the local density functional
theory (ref. 10).

Much more grave disadvantage of convenlional methods of PSD calculation is, in our view, spatial separation
(disconnection) of model capillaries. It is shown in refs. 12 and 13 in terms of percolation theory (ref. 14) how strongly
it can influence the desorplion interpretation. Despite the fact that the percolation methods of calculating the neck
radius distribution are based on the known void size distribution calculated without regard for their spatial connection
(atthecapillary condensation ) the suggested in ref. 13 approach can provide, in our opinion, a more realistic estimation
of mesoporous maicrials characteristics than the independent pore model.

Finally, both the widely spread and the most complicatcd methods of quantitative cstimation of PSD (refs.10,11,15
and 16) do not take inlo consideration influcnce of the so-called cooperative filling of neighboring pores whose
possibility was foretold long ago, e.g. (ref. 17). We have sufficient grounds 1o suppose that in the space of pore networks
the above phenomenon can have a determining effect on the adsorption branch of isotherms and, hence, introduce
more serious distortions in position and form of PSDs, caiculated by conventipnal methods. To justify this viewpoint
we have performed a thoroughly planned and theoretically substantiated numerical experiments simulating adsorption
and desorption measurements in model sysicm of interrelated cavities with exactly determined individual and
“collective” geometrical characteristics. Additionally, thc cxperiments on mercury intrusion and those on random
chord length distribution were carricd out in the same modecl porous solid for which the adsorption-capillary processes
were studicd. The obtained modcl isotherms, porogram and chord length distribution were processed by conventional
methods and calculated PSDs werc compared with the given (predetermined) radius distributions.

MODEL POROUS SPACE

The model porous space used presents to some cxlent the analog of the known model of intersecting spheres. Fig.2
shows the section of separate void with two necks. The sharp ring-like protrusions in the place of spheres intersection
arc smoothed by toroidal-shaped surfaces of the same radius, g,, (0.5 nm). Horisontal cross-hatching designates the
pseudo-liquid phase and double cross-hatching identifics the solid one. As can be easily seen from the figure all
elements of liquid-vapor configuration are uniqucly determined by radii of the forming sphere, r,, and those of necks
(ry, rp), by the thickness of adsorption film, 1, radius of meniscus, Ry, and that of near-neck toroidal chamfers, g, (sec
Appendix for details). Similarly, all configurations of indented mercury are uniquelly determined on the basis of
geometric sizes, the valucs of meniscus radius and contact angle between mercury and solid surface.

To illustralc our conclusions morc cmphatically we shall
restrict ourselves 1o the casc when all the voids have the same
radius of the forming sphere (5 nm). Computer memory saved
permanently only neck radii generated previously using the
random number generator so that radii values were distributed
atthesizcinterval of 1.4 - 4.2 nm with certain predcterminated
density (first histogram at the left, Fig.06). The relative
position of porous space elements was uniquely determined by
the system of adresses in the memory (ref. 18). Thus, at any
vapor pressurc onc could restore (orienting at the thickness of
muitimolccularlayer and the known radii of menisci and near-
neck chamfers) all the liquid-vapor configurations in any
concrete void and in all the nearest and more distant
neighbouring cavities. This allowed to perform the successive
cyclic analysis of the possibility of cooperative filling of
neighbouring cavities groups basing on thermodynamic
approach formulated below (corrected on the basis of
particular results of molecular physics (refs. 3 - 10). Similarly,
at mercury intrusion or vapor desorption one could calculate
all the volumes of mercury or pseudo-liquid inside any of the
cavities.

For simplicity, all the voids had 6 (non-intersecting) necks

located at an angle of 90° to each other. At the same ti'me it

Fig. 2. Model scheme of adsorption development ~ Mcans that the model porous space had the topology of a simple
in interrelated voids. cubic lattice. Finally, to better illustrate the influence of
cooperative effects we have tried to choose the model lattice

madc up of sofficiently large number of voids (=3 - 10%).

The described model porous space is on the onc hand, simple cnough for mathematical description of appearing
mercury, liquid etc. configurations, and on the other hand it is rather flexible for investigating the influence of average
integral curvature of surface on the processes studied. In fact, increasing the radius of ncck toroidal chamfers one can
perform the transfer from typically spongy porous space 1o the structurc close in a number of properties to corpuscle
structures.



Authenticity of pore size distributions 2211

SOME ASPECTS OF THEORY OF COOPERATIVE FILLING OF VOIDS

Up to now filling of voids the scientists were able 1o approximately calculate the relative adsorptive pressure at which
the irreversible capillary condensation occurs for the simplest geometrical shapes only. Recently, Efrcmov and
Fenelonov (ref, 19) have proposed a general cquation in terms of the surface shape factor and formal thickness of
adsorption layer. The scope of a more accurate cquation with due regard for attractive pore wall potential basing on
Broekhoff and De Boer (ref. 11) or Nicholson (rcf. 16) approach has been considcred there too. These formal
mathematics manipulations arc not convenicnt for realization in any concrete geomeiry. They were meant for
illustration of some ideas associated with presence of necks and possibility of cooperative spontaneous filling of
neighbouring voids groups. Below we present some derivations in more suitable geometric terms, obtain the relationship
of Kelvin type and then show how one can correct it for the influence of pore walls and intermolecular interaction
between the psewdoliquid films on the “opposite” pore walls. As many others (refs. 20 - 22) we shall begin with
reference to a well known Gibbs work (ref. 23) and consider the change in free energy, dG, in the pore (cavity) upon
condensation of dN moles of substance from the gas phase to the “adsorbed layer” at constant temperature, T, and
pressure, P: .

dGl’,T = (,UL - ,ng) - dN + b dA 1)

where dA is the change of interface arca; wy, and 4, arc the chemical poltcntials of liquid and vapor, ¥ is interfacial
tension. Dividing both the parts of cquation (1) by dN, supposing the adsorbtive 1o posscs the properties of an ideal
gas (4, — #;=RT In(P¢/P)) and noting that at cquilibrium dG = 0, we can write this expression in a following way:

RT In(Py/P) =-y- dA/dN @

Assuming the molar volume of pscudoliquid adsorbed substance, vy, is constantly cqual to the similar value for the
bulk liquid (dV = dN/vy) we obtain from (1) and (2) 1he equation of Kelvin type:

Y VYm dA} &)}

RT dV
In particular, for cylindrical meniscus (n=1 in eq. (4)} or hemispherical one (n=2) dA/dV is equal ton/ (r. - t), where

re is radius of cylindrical tube and t is adsorption film thickness. In this case well known “modified” Kelvin equation
is obtained from eq. (3)
0% Vi } O

RT (rc =)

P/Pg = cxp{

P/Pg = cxp{

For the analysis of stability of different liquid-vapor configurations inside voids it is necessary to express the increment.
of interface area, dA, and that of volume, dV, in terms of multymolecular film thickness, t, and use the analytical
expressions A = A(t) and V = V(1), consisting of several components referred 1o near-neck toroidal configurations,
menisci and spherical layers on cavities walls. Corresponding example for the cavity in Fig. 2 is presented in the
Appendix for the case of de Bocr - Linscn “universal isotherm” (in nm):

t=0.354 [ 5/In (Py/P) |1/3 5)
Now, having introduced into equation (3) for the critical relative pressure a certain multiplier accounting for interaction

between the material adsorbed and solid surface, and at the same time, the intermolecular interaction of films on the
opposite pore walls, we obtain:

P/P, = M(P/P,) cxp {7. Vm dA} )

RT 4V

The correction function, M, has been obtained as a result of
processing the recent publications (refs. 3 - 10) on investigation the
101 phcnomenon of adsorption and capillary condensation by molccular
physics techniques. We have performed our own calculations at the
adsorption of model nitrogen in cylinders at T = 77.4 K, basing on
the local approximation of density functional theory. Parameters of
1y nitrogen and molecules of solid surface were chosen exactly as in ref.
10. The detailes of these computations and the results of simulating
the adsorption in the above voids with different numbers and sizes
of necks by Montc - Carlo method will be published separately.

08

VALUES OF M(F/R)

On comparison of data available and obtained it is established that
for the temperatures distinctly lower than the critical one both in
cases of cylinders and slits approximately the same disagreement
0.7 ! between Kelvin and molecular physics critical relative vapor
04 Q5 06 07 08 pressures is preserved (for not very small pores). It seems, this

P/R OF KELVIN TYPE suggests that in case of the above-mentioned spheroidal voids with
circular windows the analogous dependence will also satisfactorily
correct the obtained results of Kelvin type. Fig.3 presents the
averaged scheme of correction function for capillary condensation of
nitrogen in case of local approximation of density functional theory.

1 1 1

Fig. 3. Function M correcling Kelvin critical
pressures.

It seems useful to make several predictions concerning the irreversible capillary condensation in the above voids that
could be supposcd 1o occur on the basis of analysis of rather a rough equation (3). With increasing the adsorbate vapor
pressure the volume of material sorbed in the void will increasc at approximately the same rate as in cylinder. However,
as the quantitative cstimation shows the gencral rate of decreasing the interface area will be retarded by the local
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increase of the area near the necks. As a result, the delay in irreversible filling of the separate void (in relation {o
pressure increase) occures, that must depend on the quantity of necks and the values of their radii. Hence it follows
that the normal independent development of adsorption in a particular void of the system breaks down when in the
neighboring void an irreversible capillary condensation has taken place. In fact, in this case in one of the necks a concave
meniscus appears, which abruptly changes dA value. In other words, a definit small increase in arca near the necks
stepwise results in its considerable decrease. Morcover, the siep being large enough, the premature spontaneous filling
of the void considered is getting possiblc. In respect 1o the wholc system of interrelated voids one can suppose that at
the initial stage an evident phenomenon of delay in irreversible capillary condensation occurs. Then the “separate”
filling of voids staris. As this takes placc the situation in ncighbouring cavitlics dramalticaily changes causing their
cooperalive filling associatcd with appearing of mcnisci in the necks. Obviously, the initial cffect of the above “delay
phenomenon” weakens. As the quantity of capillary condensatein the system increase, so does the possibility of sudden
appearance of two and more mcniski in the nccks of free voids. This must result in increasing the portion of porous
space elements filled according to cooperative mechanism. The possibility of this mechanism becoming dominating
from the definite moment, should not be ruled ont.

In closing of this section it should be noted in our numerical adsorption-desorption experiment we did not take into
consideration the change in density of adsorbed layers and that of a condensate in filled voids. One can try to correct
for the change of density cither according to Steele (ref. 24), or in correspondence with ref. 10, or, what secms most
reliable, based on the study of adsorbate and condensate density in the above voids by Grand Canonical Monte Carlo
techniques or by molecular dynamics simulation.

DESCRIPTION OF NUMERICAL EXPERIMENTS

Atthe initial stage of cxperiment until the spontancous filling of at least one void was obscrved, each cavity in the lattice
was analysed using the relationship (7) at each P/P; only once. Then we carried out succesive calculation of volumes
of pseudoliquid configurations clements in cach void (see Appendix) and their summing over the whole lattice. When
at least even one void satisfied the unequality
Y ' Vm dA } 9]
Y

1 RT ~av

P/Pg< M(P/Pg) exp {
we performed a second analysis of situation in all the lattice voids
situated next to the filled ones. Such a procedure was repeated at
each P/Pg until at thie next full analysis of the lattice the absence
of new filled voids was observed. Only after that the volumes were
calculated and summed to obtain the next experimental “circle”
of model isotherm. To have a better idea about the effect of
cooperative filling we have obtained one more isotherm supposing
all the voids to be spatially separated. Using Fig.4 one can compare
0.44 an satellitc isotherm (b) (dotted line) with the principal one (a) -
(solid thick line) exhibiting a vastly more steep slope in the region
of high filling of porous space with condensate.

3

0.8 4

©
6:

0.8 1

o N

0.2 - To obtain the desorption branch of isotherm an algorithm of
preliminary percolation sounding was used, described in detail in
ref. 18. At the moment of beginning the desorption thickness of
film in the necks was estimated basing on approach developed in
0 N v T - refs. 16 and 25 but as applied to the curvaturc of toroidal surfaces.
¢ 0.2 0.4 08 08 ' The value of critical meniscus was calculated as suggested by
RELATIVE PRESSURE Nicholson (ref. 16) for circular cylindrical capillaries. We must
admit that the adopted by us scheme of estimation the individual
Fig. 4. Isotherms obtained from numerical desorption of capillaries is not accurate enough but at present we
adsorption experiments: a - filling of do not have sufficient information (based for example on
system of interrelated voids; b - filling of molccular physics approach) for more precise estimation of critical
the same voids separalcd in space. values of film thickness and meniscus in the similar
configurations. For this reason in addition to the principal

adsorption experiment we performed an auxiliary experiment on mercury inirusion into the same porous solid.

RELATIVE ADSORPTION

As is known, percolation regularities of mercury intrusion arc similar to those of vapor desorption (ref. 12). However,
in case of mercury penetration the difficultics disappear, associated with estimation of critical values of multimolecular
film and transverse radius of meniscus in the neck. At the mercury intrusion all geometrical configurations were
estimated using Laplace low and the predetermined values of contact angle between mercury and solid surface (140°).
The only uncertainty associated with arbitrary way of choosing the contact angle (in supposition that model porous
solid is non-unshrinkable and its surfacc is not amalgamated) is of no importance in calculation the apparent volume
or surface area PSD if one and the same value is used for producing the model porogram and in calculations following.

Computer experiment on random intersecting length distribution (RILD) calculation was carried out in a somewhat
different way than those on adsorption or mercury intrusion. It was supposed that in the centre of single void, 5 nm in
radius, the origin of Carlesian coordinates is situated so that each of three axes passes through the centers of two
opposite necks (windows). For this void six neck radii werc generated ( using a random-number generator ) in
correspondence with PSD previously used for adsorption and mercury porosimetry. After that three random
coordinates xy, y, 2, of thc point lying inside the void were produced, and so were the three random cosines 1,m,n,
of any direction in three-dimensional space. Thus, we obtainced ke equation of a random straight line (RSL):

(x-x)/1=(y-yp/m=(z-z;)/n (8)
and started to look succesively for the interscclion of the RSL first with each of six windows inside the necks. For
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instance, for the positive dircction of abscissa il meant a simultancous solution (§8) and
x=(5%-r2 )03

y2 + 22 = r,z(+
where ry4 is the radius of a corresponding neck. If RSL did not pass through two windous at a time we looked for the
intersections with each of six toroidal patches of surface near the necks. For example, in case of positive direction of
applicate axis, equation (8) was solved simultancously with

X2+ y 4 @z —z)?+ 12 —pil =412 (x2+y?) (O]

zo=(5%-r, )03
where g, - is the radius of neck toroidal chamfers. In this case coordinates of intersection points with tore xy, yy, 24,
(provided that (8) and (9) had at least one simultancous solution) must have satisfied the following coriditions

(Xl2 +Y12) Sl — 6 (rz, + ) /(S + pp)
;< Z,

(intersection point must lie inside the void). If in the first {wo cascs two intersections (with windows and/or toroidal
part of the surfacc) were not found, equation (8) was solved simultancously with spherc equation:

x2+ylez2=52

Furthermorc, if the straight linc had two intcrscctions with void surface, its length was calculated at once and to the
corresponding clement of RILD array 1 was addcd. If RSL “went out” through the window, this window was interfaced
with an adjacent void § nm in radius. In other words, five morc radii of necks were gencrated and the origin of Carlesian
coordinates was transfcrred to the centre of new adjacent void. After that the procedure of scarch for interscctions of
(initial) random straight line with the surface of (ncw) void was repcated. This was continued until two intersections
of a random straight line with the surface of solid phase were detected. The length of a random chord was calculated
by summing up the segments belonging 1o the voids of chain obtained. Then a new “starting” void was generated and
analysis of a new chain (that could consist of onc void only) was pcrformed. At the top of Fig. 7 onc can see RILD
obtaincd from the processing of 75000 chains with total number of voids morc than 500000 (instcad of thc full length
half-length of chords wcre plotied on the abscissa)

It should be noted, that PSD shown in Fig. 7 on the lower right was calculated basing on SPS model in accord with
algorithm tested in ref. 26. Although the above numerical experiment does not accurately correspond 1o the procedure
of processing the photomicrographs of porous samples scctions, one can show as well as in ref. 27 that PSD obtained
from RILD must be exactly the same as for the flat scction of the porous solid. It is worth nothing that results of the
last experiment might be of interest not only for realistic description of porous structure characteristics based on
microscopy data but also in case of any physical tcchnique cmploing ray or particle scattering in porous media.

DISCUSSION

Before performing the comparative analysis of calculated (on the basis of isothcrms, porogram and RILD) and initial
PSDs it seems neccssary {o dwell on dissimilarity (from the point of vicw of physics) of distributions comparcd. In the
case of neck radius distribution we deal with classical probability density, p(r), i.c., the randomly chosen in lattice
constriction belongs 1o radii interval, dr, with probability p(r)dr. In other cascs instead of density plot p(r) considered
are cither density curves 712 Lp(r) (adsorption and mcrcury penctration), where L is a certain length of cylinders, or
density curves (47/3) r3p() (RILD). Evidently, in general case number and volume density functions must differ

- considerably. However, duc to fairly narrow neck size
regions the obtained adsorption, mercury-porosimetry
and, desorption volume sizc distributions in respect {o
cylinders radii practically do not differ in the given
scale from the corresponding distributions of number
and surface area. In this connection, axes of ordinates
and captions to them in Figs. § - 7 are omittcd.

A very narrow and high histogram near the marker
S nm in Fig.5 represents the density function of
el distribution of void volume of model porous solid in
a— respect to average semilengths of random chords
passing through the centres of voids (i.e. througth
the centres of forming spheres). The other curves

L) v L)
20 8.0 4.0 6.0 8.0 7.0 8.0 9.0 10.0

Fig. 3.

RADIUS, (nm

Comparison of adsorption PSDs with the initial voids
halfsize distribution: la - at the processing of the
principal isotherm (curve a in Fig. 4) n =1 was used
in eq. (4) (cylindrical meniscii); 1b - the samc for an
auxiliary isotherm (curve b in Fig. 4); 2a - when
processing the principal isotherm hemispherical
menisci (cylinders with bottom) were uscd; 2b - the
same for an auxiliary isotherm; 3 - volume void
distribution with respect to statisfical halfsize.

dcescribe the densities of “adsorption” distributions
of tolal pores volume normalized 1o unit area.
Smooth curves (la and 2a) arc the densitics of
volume distribution in rcspect to radii of inde-
pendent cylindrical capillaries, obtained at the
processing of principal adsorption isotherm (a). In
particular, curve 1a is calculated by Cranston and
Incley method (ref. 15) interpreting the filling of
cylindrical capillaries with the bottom. When
calculating PSD for botiomless cylinder (curve 2a)



2214 D. K. EFREMOV AND V, B. FENELONOV

the same algorithm and the same analytical expression (§) for the thickness of multimolecular layer were
used, though in numerator of Kelvin cqution (4) n = 2 was substituted for n = 1 (cylindrical form of
meniscus). Despite the fact that the model of independent cylinders with bottom must, seemingly, describe the
process of filling the real porous solid more adequately, the average pore radius ( 6.0 nm) obtained according to
Cranston - Inkley techniques differs from the “true” average void halfsize ( 4.8 nm) no less than the average
radius of cylinders open on both ends (3.6 nm).

Detailed analysis of the reasons causing a discrepancy between the average radii values is too difficult. One can say
with confidence, however, that one of the main reasons of such a discrepancy in case of cylinders with bottom is the
above discussed phenomenon of delay in filling the voids which is due 1o presence of necks. In the second case, the
discrepancy between average radii can be atiribuied both to the differcnce of critical liquid/vapor configuration forms
in opcl:’n cylinders and in the voids described, and to imperfection of Kelvin ecquation for the formal calculation of
distributions.

The width of “apparent” PSDs is considerably more than the “true” one despite the phenomena of cooperative filling
favorable for obtaining the more narrow distribution densitics calculated formally. Fig. § illustrates the aforesaid more
vivily, depicting distribution densities calculated for the auxiliary isotherm (b) (all the voids are separated in space).
Now the ranges of model cylindcrs radii exceed by an order an interval of voids halfsizes. Although this case presents
an interest only from theoretical point of view, it is worth noting that the average radius of cylinders with bottom differs
approximately by 509, from the true one (in comparison with 25% for the main isotherm). Basing on the last
observation one can suppose that Kelvin interpretation of spontaneous filling the through cylinders too rough for so
little radii corresponds well to the delay in individual capillary condensation
in voids of approximatcly the same size, having six necks of radius slightly
morc than that of the void.

Histogram of number density function of “truc” neck radius distribution
(Fig. 6) is rclated to “differential” volume size distribution curves
calculated from desorption branch of isotherm and model curve of mercury
intrusion. The firsi thing that should be noted is a relatively satisfactory
correspondens between mercury - porosimetry and desorption PSDs. Both
the distributfions are located in the region of the larger neck radii, though
neither in shape nor in width they correspond to the true neck radius
distribution. Basing on both capillary radius distributions calculated we
should like to mention that a certain number of the largest necks and a
considcrable portion of the smallest oncs are not covered. The first
phenomenon can be easily explained basing on the concepts borrowed from
percolation theory ( refs. 12, 13 and 28 ): for the global penetration of
menisci inside porous space 10 begin, a sufficiently large portion of necks
must accumulate, whose radii satisfy Kelvin (or Washburn for mercury
(ref. 29)) condition. Thus, the largest necks of interrelated pore system
practically do not inhibit the menisci after the beginning of global
penctration, do not reveal themselvs at the isotherm (mercury porogram)
and, hence, can not appear in interpretation of desorption (mercury
intrusion) for model independent capillaries. The smallest necks in interrclated system (approximately the half of all
the necks) are not reflected in calculated PSDs, since desorption (mercury) menisci penetrate inside the porous solid
through relatively larger necks. In this connection it should be noted that location of narrow peaks of desorption or
mercury-porosimetry PSD can change dcpending on average coordination number (connectivity) of porous space (refs.
12 and 13). In the above model porous solid each of the voids had 6 holes. It is evident that elimination of a considerable
portion of necks in the lattice will result in decrease of menisci penetrability. The latter will manifest itself in
corresponding shift of mercury porogram or desorption isotherm to the left, and, hence, in the shift of formally
calculated PSDs in direction of smaller radii. At the same time, there is good reason 1o belicve that disiribution width
must not significantly depend on the change of average number of necks per each void (ref. 12 and 13).

mercury Intrusion

desorption

1.6 2 2.5 -] 8.6 4 4.6
RADIUS, (nm)

Fig. 6. Comparison of predetermined
neck radius distribution with
mercury - porosimetry and
desorption distributions.

Inrespect to the PSD obtained in ref. 1 from mercury
intrusion data (Fig. 1) one can say with confidence
that as well as in the above case it is far from covering
the whole range of constriction sizes in porous space
of material studied. Probably, the difference be-
tween typical sizes of constrictions and widenings in
real porous systems is not so large as one can think
analyzing Dullien et al works. There is one more
ground in favour of this ‘conclusion: during the
scanning of contrast photomicrographs of porous
solid cuts the ray of scanner must, from time to time,
continuously pass{hrough two or several connected
voids of structure. At the interpretation based on

S A W i e SPS'model this will be considered as presence of very
0 2 4 6 8 W 12 4 186 B 2 22 2 large cavities. Hence, the possibility of
RADIUS, (nm) “photomicroscopic” distribution (Fig. 1) containing

at the right rather a long and thick fictitious part

houl 1 .
Fig. 7. At the top: random intersccting (half)length should not be ruled out

distribution (RILD) in abovc model porous space; at
the bottom: PSD calculated from RILD using sphere
pore segment (SPS) model.

The aforesaid is completely confirmed by results of
processing the RILD using SPS model. Figure 7,
bottom, depicts the calculated PSD, consisting of
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separate sharp peak ncar mark Snm and long wavy curve in region of large radii. The peak on mark §
nm corresponds to the radius of model porous solid voids for which RILD was calculated, and fits the case when the
chains in the above experiment consistced of one cavity only. However, the area of this peak constitutes a mere 11-12%,
from the total area under distribution curve. The remainder “fictitious” part of arca correspond to the casc when the
chaines of voids strung on random chords consisted of two and more voids. At the further processing of RILD obtained
using SPS model these long random chords werc considered as belonging {o separate large spheres.

CONCLUSIONS
Basing on the investigations performed in this work, one can draw the following conclusions:

In respect 1o adsorption: shape and width of adsorption branch of cxperimental isotherms are affected on the one hand
by the average number of necks per void (that influences the degrec of delay and development of capillary condensation
in the system of interrelaied mesoporcs), and on the other hand by the cffect of cooperative filling the voids with
condensale at the later stage of adsorption. Nonc of the known mcthods of calculating the PSDs docs not take these
two things into consideration, including a recently developed method (ref. 10) based on molecular physical concepts.
Because of this, shape and width of distributions calculated formally on the basis of adsorption branches of real
isotherms can substantially differ from the true PSDs. The average diameters of cylindrical capillaries assumed in
calculations are the highest (cylinders with boltom) and lowest (boillomless cylinders) estimations of the average
characteristic size of widenings of porous space. It is not improbable that the true characteristic size is closer to the
average value of model bottomless cylinders.

In respect 1o desorplion and mercury porosimetry: interrelation of mesopores is responsible for the initial delay in
global penetration of menisci inside the porous solid, Howevcer, percolation threshold being achieved, the accelerating
process of freeing from condensalte (filling with mercury) proceeds through the necks of middle sizes. Considcrable
portion of the smallest necks “do not have a chance to comc into action”. Thercfore, the width of formally calculaled
PSD appears to be sufficicnily smaller thanin reality. The shape of calculated distributions as well as in case of adsorpti-
on branch, is a result of complex real process in the system of interrclated mesopores and does not reflect the truc
consiriction size distributions. However, size ranges obtained at the formal processing of desorption isotherms and
mercury intrusion curves (porograms) lic most probably within the limits of real intervals of neck sizes. Desorption
and mercury-porosimetry average radii of capillaries are the result of approximate estimation of the average radius of
mesoporous space narrowings which depends on the average number of necks per void in the system,

Finally, the difference between the sizes of narrowings and broadenings in real mesoporous materials is not so great
as one can think when correlating the results of interpretation of mercury porosimetry data and statistical processing
of photomicrographs. Excessive difference is duc to imperfection of the model of independent capillaries (mercury
porosimetry) and the model of independent sphcrical segments.

APPENDIX

When calculating the components of volume and surface area of material sorbed, as an independent variable one can
take the thickness of multimolecular layer, t, (connected with the relative vapor pressure by eq. (5) of the principal
part of text). Obviously, cquilibrated radius of menisciin the necks is expressed in terms of eq. (5) and Kelvin equation’
(4) as

Ri= (7 vy n-13) / { SRT (0.354)%} (A
Angles a; and a5 in Fig. 2 are cqual to
a;=arccos {(r; + g,)/ ry} (A2)

where the neck radii, r; (i=1,2), void radius, r, , and the radius of neck toroidal chamfers, g,, are assumed on generating
the model porous space.

Volume, Vs (ay, r + p,, t + p,), and surface arca, A (@), 1y + o, t + ) of toroidal sector (sections ABC and DEF
in Fig. 2) arec expressed by formulae “hard-to-get-at” in refercnce literature but quite simple and accurate
V(e ry + ot +0) =7 (1 + )% {ag - (11 + p) = (2/3) - (t + po) sinay} (A3)

Ay =Aglay,ry + ot + ) =27 (L +p) {e)- (r] + ) — (t + p,) sine;} (Ad)

Where sector angle, aj, is measured in radians from horizonlal. Ring-like volume of liquid in the lower neck is equal
to
vo = Vts(alvrl + po,t + f)o) - vls(al.vrl + Pos po) (AS)
Angle 8= B(1) (neck on the right) is determined by the radii of the void, rp, of the neck, rz , and of neck chamfer, gy,
as well as by the thickness of multimolecular layer, t:
B(1) = arccos {(rz+ p,) / Ry (1) +t+ p)} (A6)
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The volume of narrow ring of adsorbate (sections GHIJ and KLMN) is equal to
Vi={Vslaa,ry + 05 0o +1) = Vislaa,rz + po, 0)} -
-{Vis(Bira + o, 0o + 1) — Vi(Bir2 + 25, 0)} (A7)
and its surface area is
Aj =Ag (ag,rp + 0y U+ 0y} —Ag(Biry + 05 1+ 1) (A8)
The remainder volume of liquid inside the conc OPQ is
Vot Veon-Vis- Vis2 (A9)

where expressions for volunie of cone with section SPQ, V(8,12 + p,) and the volume of spherical sector with section
SIK, V(8,Ry) can be found in any handbook of mathematics (see, for instance ref. 30). Vg (8,13 + 0, 0,) is the
volume of toroidal sector with sections PIU and VLQ.

The area of liquid/vapor interface in cone SPQ corresponds (o the area of spherical sector SJK (mcniscus)
Ay=27RE: (1 -sin @) (A10)

The total volume of “liquid” insidc the cavity is expressed as
V) = @a/3) {r] = (r, = 1)3} +Vo+V +V,-V3-V, (AlD

where V3 is the difference of volumes of spherical sectors with scctions HOM and GON, V, is an analogous difference
of volumes for the lower neck.

The area of liquid surface inside the cavity in Fig. 2 is cqual to
A() =dm(r, —1)2 + Ag + A + Az — Az — A4 (A12)
where Aj is the area of spherical sector GON, A, is the arca of a similar sector for the lower neck (BOE).

Expressions (Al) - (A12) can be casily differentiated with respect to t using derivative tables and the rules of differen-
tiation of composite functions, in order (o find the analytical cxpressions for dA/dt and dV/dt, used in relationship
(3) and (0) in the principal part of the text.
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