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Abstract
Methods for the calculation of activity coefficients of binary mixed electrolytes are
presented. Interrelations between the mixing coefficients are given. Applications of
the Gibbs-Duhem equation, cross differential conditions, and higher order 1imiting laws
are shown. Accuracies and the theoretical justifications of the various methods are
compared.

I. INTRODUCTION

It is a great honour to be invited to present this R.A. Robinson Memorial Lecture
in memory of a great teacher who has made tremendous original contributions to ionic
solution chemistry.“‘zl As electrolyte is characterized by its dissociation 1in a
solvent into ions it is therefore only natural to consider the properties and behaviour
of fons as individuals. Even though the exact activities of the individual ions are
experimentally unattainable and that the concentrations of all the individual ions are
not linearly independent due to the electrical neutrality requirement, R.A. Robinson did
not share the defeatist view of some thermodynamicists that single jon activities are
merely useless mathematical devices, and he was able to split the mean activity
coefficient into its separate ionic contributions, [3] and underscored his belief that
conventional scales of individual ijonic activity consistent with mean activities can,
1ike the pH scale, be enormously useful.“] In fact, with the use of Debye-Hucke!
approx1mat1on[5] at lowconcentrations for single jons as well as the cation-cation pairs,
he was able to derive the higher order 1imiting laws (HOLL) in agreement with the cluster
expansion derivation of Friedman, and probably was the first to incorporate the HOLL into
the semi-empirical calculation of activity coefficients of binary mixed electrolytes. (6]
Furthermore, using the chemical model of the association of ionic speices he was able
to confirm the prediction of Friedman{7] that the mixing of symmetrical binary
electrolytes is independent of the common ion at low concentration. [6] on the other hand,
the 1inear dependence of the ionic concentrations was handled by Friedman{8] who was able
to avoid the singularity of the generalized compressibility matrix and thus compute the
activity coefficient of the mixed electrolytes in an indirect way. Besides this indirect
method which was based on the ab initio statistical mechanical computation of the radial
correlation functions, the calculation of activity coeffcieints of binary mixed
electrolytes can also be accomplished by determining themixing coefficients from fitting
the experimental activity coefficients semi-empirically. In fitting the experimental
data one cannot vary the parameters for the two electrolytes independently because the
Gibbs-Duhem cross differential (CD) condition must be satisfied. Therefore, we usually
fit the mixing coefficients of one electrolyte and then compute the mixing coefficients
of the other electrolyte according to the CDcondition, or express the mixing coefficients
of the two electrolytes by the same set of parameters which satisfy the CD condition and
other conditions such as the HOLL. The first approach was first employed by McKay[9'

, and later generalized by Lim{12,18], The second approach was adopted by
scatchard[14-16] pitzer[17-24] and L im[25-28], 1n thisarticle wewill present the McKay
method in section II. Activity coefficients and the relations betweenmixing coefficients
are shown in section II1I, other empirical methods 1in section IV, indirect method of
Friedman in section Vv, and finally the comparison of the various methods in section VI.
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Il. McKAY METHOD

Although the molarity in the McMillan-Mayer system and the molality in the Lewis-
Landall systemare the two concentration units usually used by scientists, the electrical
concentration of ionic strengths which was proposed by Lewis and Landal1{29] is also
popular and will be used in this article. In abinary mixture consisting of electrolytes
A and B, the ionic strength and the fractional ionic strength due to B are therefore the
two independent concentration variables. They may be denoted by I and y respectively.
Assuming that A consists of ions t and 3 with charges z4 and z3 while B consists of ion
2 and a common ion 3 with charges z; and z3, one may define z, = |zqz31/2,
zg =|z2z3l/2 and u @ (1 - y)/zp + y/zg. The stiochiomatric mean activity coefficient
of the mixture is then

In ¥y = {{Q1 - y)/zplnvp + (y/zg)invg}/u o

The interconversions between Y, and the practical osmotic coefficient ¢ can be given as

-1 = (un)-1 IZI ul d 1ny_t (2)
and
I
Tnyg = (¢ - 1) + J-u (¢ - 1)d In(ul) (3)
- 0

The above interconversions are obtained from the well known Gibbs-Duhem equation[30]
which is derived from the following Euler theorem

————— ny + z 3""”L = jf (4)

where n, and n__ are the number of moles of solvent w and solute L respectively, while
f is a j-th order homogeneous function:

f(kn,, kna, kng) = kJ f(n,, na, ng) (5)

k isamultiple constant. For any intensive property j =0, whereas j = 1 for any extensive
property which is represented by f.

On the other hand, the Gibbs- Duhem cross differential condition made it possible
to compute the mean activity coefficient of one electrolyte from the mean activity
coefficient of another electrolyte. Since the infinitesimal increment in the Gibbs free
energy G is an exact differential, the integrability of G results in the cross differential
condition and hence the McKay method. The generalized McKay method may be shown as follows.
The mean activity coefficients of the two electrolytes can be written as

M

log Yo(L,y) = log Yo5(I) - n§1aAn(I)(I L (6a)
M

log vg(I,y) = log Y9(I) - n§1a8n(1)(1 - Ig)" (6b)

where Ip = (I - y)I etc. Assuming that v,(I,y) can be determined experimentally so that
mixing coefficients a,, are known at various ionic strenPths, then the parameters agp
can be determined from the cross differential conditiont2:12,
s 0logy _s0log ¥

vgtvp ("""JL) = vatvy (-~ B"’) €]
Substitute eqs(6) into (7) and integrate from Iy to I we obtain the equality between the
right hand sides of (8a) and (8b):

M
f(Iy) = va'va~ n‘§1 I"(1 - y)P agn(D) (8a)



Calculation of activity coefficients of binary electrolytes 2563

f(I,y) = va'va~ 1oglvg®(I)/vg%(Iy)] -vp'vg™ 10glva°(I)/¥a°(1y) ]+
M 1
+vg'vg™ nz_:1{n(1y)"'1 ny apn()dx + (Iy)Moyn (1) - apn (1]} (8b)

At a fixed I with variable y we can compute a set of values of f(I,y) from eq(8b), from
which we can optimize ag, at this I according to eq(8a). For a special case where A
satisfies the Harned rule(30] namely, all a,, are negligible except o4;, and set M
=2 for electrolyte B, then apgy and ag, can be obtained from the plot of f(I,y)/Ipva'vpa~
versus I,. This plot should produce a straight line with ag, as its slope and apgy
as 1ntercept[2]. The above procedure may be repeated for all the other ionic strengths.
It is obvious that the above method requires the numerical integration. However, we can
also do it in an alternative way which requires numerical differentiationl 12,131, 1n
this second method ag, can be obtained from the experimentally fitted oy, according to
a general relation as required by the cross differential condition. Thus[12]

- e d -
(3 + Noag 44y = (-1)J E?{aj + gl [r( rj1) TN L e Y 5) —gfr_zr 3 - by (9)

rzj+i
where
ay = =8jo(d log Y4%/dI) + (doay/dI) (10a)
bj = -840(d log vg®/dI) + (dagj/dl) (10b)

the derivatives can be computed using a 3-point Lagrangian formula. Successive evaluation
of ag, results in an explicit equation for these mixing coefficients which are reported
elsewhere(13],

ll. ACTIVITY COEFFICIENTS AND RELATIONS BETWEEN MIXING
COEFFICIENTS

Besides expressing the mean activity coefficients in terms of the Harned
coefficients as shown in eq(6), it was pointed out by Friedman(31,32] that despite the
fact that activity coefficients have been in much more general use than the excess free
energy in application where the behavior of a particular component of a solution is of
special interest, the use of a total excess functionsl31,33,34] £or the representation
of the properties of mixed electrolyte solutions offers two advantages over the use of
partial molal quantities. Frist, there is no cross differential restrictions on the
mixing coefficients of the total excess functions, second, these mixing coefficients can
be expressed as combinations of the mixing coefficients of partial molal quantities of
different electrolytes. It is therefore more useful to express the activity coefficients
of a electrolyte in terms of the mixing coefficients of the excess free energy changes
than the Harned coeff1c1ents[25]. The changes in excess Gibbs free energy of mixing at
fixed temperature and pressure can be given as[31'

M-1

AgG®X = WRTIZy(1 - y) J_% 95(1v)3 (1)
where w,, 1s the mass of solvent in kg, and Y = 1 - 2y, Activity coefficients can then
be obtained from[35]

d4,G8% y O A,GeX
Ip/¥a° = -zpyId + (zA/RTww)(--S T T T --éﬂb--- (12a)
D A GeX 1 -y A GEX
InYg/Yg® = zg(1 - VIO + (zB/Rva)(---é - b ---a-my---) (12b)
where
O = [(1-4%2577 - (1 - 60271 (13)

with 0J° being the osmotic coefficient of pure electrolyte J.
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Friedman[41] has also shown that the Harned mixing coefficients are divergent and
can be reformulated into the convergent mixing coefficients of A, and B,. In terms of
these modified Harned coefficients activity coefficients are defined as

M-1

IMA/A° = zply I ApC-IV)" (148)
n=
M=1 _
Inyg/1g° = 2gI(1 - y) g@o B (IY)N (14b)

Substitute eq(11) into eq(12) we arrive at
M=1

(mp/1a0)/zayI] = = @ + T [9nDn(+) + 9n’En($)] (15a)
M-1
(nvg/1g°)/[zg(1 - V)11 = @+ g::o [9n0n (=) + 9n’En(=)] (15b)
where
Dp(1) = [(n + 2)(YD" + n1(YD)"1]/2 (16a)
Ep(+) = [1(YDN + (y1)M1]/2 (16b)
In terms of modified Harned coefficients the equations become
M-1
(InYa/Ya®)/[zpy11 = - @ + n:Eo 1AL ()N - /2] + Bpfyp/2} (17a)
M-1
Onmyg/vg®)/lzg(1 = YI1 = @+ n?b 1M{A,fin/2 + BpIY" - fy/21} (17b)
where
fin = (n+ 2)71 if n - k is even, (18)
= (n+ 1)1 if n - k is odd,

From eq(12) various different interrelations between activity coefficients of A
and B can be obtained. Similarexpression for the osmotic coefficients canalso be derived
as fo11ows[35]:

UL(1 - §) = (1= Y)I(1 - $4°) /2 + YI(1 - $5%)/2zp + [AnG® - (2 A4,G8%/DT)1/(WWRT) (19)
The osmotic function ® can also be expressed in terms of the Harned coefficients:

M1
® = [l9y+ (B - AQ/2 = I (By - Ag)INfy/2
M=1
= I [ 1n10/(n + DHegg/z, - oign/zp) (20

Finally, the interrelations between themixing coefficients are obtainable as shown
below:

M
Mo oy, = -z mfi.n tunI™ "L (21a)
M
nt10 GLn = ZL(28LA - 1){87110 +k:§—1 (_2)”"21k‘ﬂ+1(28LA - 1)k+1[€nk9k (21b)
+ (28LA - 1)8n’k_1g'k_1/(k -n+ 1)]}
. Kk
Ln = -Inf0 kf.‘.n ap, keI 27K /2 (22a)

2(28.g - Ny = (28 g - 1)[28,P - (n + 1)Igpyq - 9'pn-q] + (n + 2)gp + I’y (22b)
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M
gy = -1n10 k:5i1[a8k/zs + (=DM ap /2 Ik (23a)
M
9n = k§n [(-1)nAk + Bk]Ik—nfnk (23b)
M -
g'n = 1Into k;nzﬂ IR =10y /28 + g, ke 1/ 2800k (23¢)
M;j
g'nh = -(n+2) k=nu+1 Ik-n—1fnk[(—1)nAk + By] (23d)
g9’ = [(-1)nAn + By - (n + 2)9n]/1 (23e)
where
ton = 2 ﬂ:l) (24)
€k = ki(2k = n + 3)/[(n = 1)i(k = n+ 1)!1] (25)
K
hak = 0 CR)/ICk + 1)2M (26)
Aok = m:§+1 frml (0 + 2)/2K (21)

and note that L = A or B in the above equations.

If we express the change in the excess Gibbs function of the solvent by
M-1
ApGyBX/W,RT = AjuI(1 - ) = -12y(1 - y) n:% W (1Y (28)

then from the relation that A.G,8*

ARGeX - 124,6%%/21, we have
Wy = 2(IM1g)/d1 (29)

We have already known that the Harned coefficients must satisfy the cross
differential condition from which the McKay method was developed, it can further be shown
that a necessary condition for the cross differential condition to be satisfied is as
follows

ogw/zg + (-1M Ta,u/z, = constant (30)

where the constant was identified{12] ¢o be -2M-1(M + 1)9y-1/1n10. The above equation
is equivalent to the consistency conditionl12,25,35]

9'M-1 = Dgy-4/3I = 0 (31)

which requires that gy_4 to be a constant independent of I. We note that the cross
differential restriction does not apply to the mixing coefficients of 9p, except the last
one gy-1. They must also satisfr the higher order limiting laws (HOLL). The HOLL for
9o are known to be[6’8131’32'36 :

d In go/dI¥? = 6212A‘ = A for symmetrical mixtures (32a)

}1Togo = 3(zq - )22, In 1 for unsymmetrical mixtures (32b)
whereas for unsymmetrical mixtures the HOLL for 94 1s(8,36]

lim 9y = (1274,)3(25 - 29)3(2y + 25 + 23) 151" (33)
where A, is the Debye Huckel limiting slope[24v37'33]. However, the HOLL of g4 for

symmetrical mixtures is yet to be found. The Kappa graph integratl i3 has been
eva1uated[32'39'4°]. From eq(32) we immediately reach an important conclusion that at
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very low concentrations g, and g’y should have the same sign for symmetrical mixtures
whereas they must be of different signs for unsymmetrical mixtures. Furthermore, the
mixing for symmetrical mixtures are indepedent on the common ijon at low
concentrations(6,31,32],

IV. SEMI-EMPIRICAL METHODS

Besides the empirical methods of Harned and McKay, other semi-empirical methods
all express the activity coefficients of the two electrolytes by a same set of parameters
so that the activity coefficeints of an electrolyte can be predicted once the parameters
are determined from the other electrolyte. Different methods were devised according to
their different approximations to the g, coefficients. Usually the degree M of the
activity coefficient equation is chosen to be two which is adequate for msot cases. The
followings are some best known methods.

{A) Method S (Scatchard)! 48!

9o = bgy *+ bgal/2 + bgsl?/3 (34a)
g1 = byp/2 + by3l/3 (34b)
8'p = bgol/2 + 2bys1/3 (34c)
o'y = byy/3 (34d)

where b1g are parameters to be optimized. For a second degree equation we can set by
= b3 = 0.

(B) Method P (Pitzer)'7-22
9o = KyBux *+ KoByx + K3Oun + T(K4Clwx + KsC'nx *+ KgFunx) 3501

91 = KyC'Mx + KgClyx + Kg¥ynx (35b)

where B and C* are I-dependent parameters for pure electrolytes and can be predetermined,
while 0 and ¥ are I-dependent parameters for the mixing of electrolytes and are to be
optimized. According to the consistency condition, which is a necessary condition for
the cross differential condition to be satisfied, gymust bea I—independentconstant[12],
and in fact Pitzer had suggested that C* and ‘¥ be taken as I-independent constants so
that this consistency condition is satisfied. g’ and g’y can be obtained from
differentiating g, and g4 respectively with respect to I. K, are constants depending
on1f on the charge type and for symmetrical mixtures all K, vanish except K3 and
Kg. 13,23,24] ywnite ‘¥ is assuming to be a constant, the general form of 6 can be written
either by[23,24]

Ea.8 + %6(1 + kh) (36a)

OuN
or

GMN = 90f1 + Hfz (36b)

4 and k are adjustable parameters and h and 90 are functions of 1[17’24]:

h = [1- (14 2v)c]l/av2 (37)
¢ = exp(-2v) (38)
v = al%/2 (39)

o is chosen to be 2 for most cases. E6 is the electrostatic contribution to © which
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is I-dependent whereas S6 is the short range contribution which is assumed to be a
constant.

(i) For symmetrical mixtures, we have Eg - 0,

8, = IH)nBG = go(0) exp(AI)/Ky (40)

Also -1 < k < 0. If HOLL is to be satisfied exactly, thenl18]
k = -9242A/(a + 9242A) = s (41)
but we should point out that the above k value does not correspond to the optimum va1ue.[24]

(i) For unsymmetrical mixtures, we usually take 8 to be 0 or 1 although the theoretical

8 isl23

8 = vavATVBYRT/2125(24 + 2p)? (42)
and

8, = [3(z4 - 22)2A2 In I - Lyl/Kg (43)
with

(0) (1) (0) (1))

Lo = K(Bux '+ Bux ) + Ko(Bnx * By (44)

B(”) etc have their usual meanings{17:181, £, and f, are functions of I which satisfied
1 2
the following conditions[23,24,28]

1i = 1 , i =
113" U “e

Typical examples of the Pitzer methods are

P-I 0, ', y are independent cosntants
P-11 6 = Ep + sp
P-11I 8 m S0 (1 + kh)
P-4 8 = B6h + uI¥
p-4f 0 = 8p+ up
where
p = (1-c¢)ev P = [(1=-v)-(1+v)cl/av? (46)

When the value of k is given by eq(41) P-III becomes P-6 for symmetrical mixtures.

{C) Method RWR (Robinson-Wood-Reilly)'®
9o = M exp[6z¢%AI%/(1 + agI"?)] + vI (47a)
g4y = 0 (47b)
This is probably the first semi-empirical calculation which has incorporated the HOLL.

Although the method is for symmetrical mixtures only, it can readily be extended to
unsymmetrical mixtures by choosing the appropriate gg.

(D) Method H (Higher Order Limiting Law)!25:35:42.43]
90 = AMO(I) + pI + vI® (48a)

gy = constant (48b)
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where for symmetrical mixtures[28]

A= gel0) , (1) = exp(AyI¥?) (49a)
While for unsymmetrical mxitures[28]

Aoz o3(zg - 222, (@) = Inl (49b)
This method H is a refinement of the RWR method by including the I1** factor as observed
by Scatchard and Prent1ss[‘4], and by introducing the consistency condition of eq(48b).

For unsymemtrical mixtures A can also be taken as a variable without violating the HOLL
because ® -> -00 when I -> 0.

(E) Method LA (All Mixing Coefficients)'?”!

99 = (Ag + Bg)/2 + A4l (50a)
9’0 = -2Ay (50b)
g9 = 0 (50c¢)

(F) Method LC (Consistency Test)!?”!

9o B (Ag + Bg)/2 + AqI (51a)
g’o = -2A4 (51b)
91(Im'Y1) = g1(In’yJ) = 0 (510)

where I, and I, are any two total ionic strength and Y; is a fractional ionic strength
at fixed I, whereas Y is at fixed I,,. A1l the mixing coefficients are to be optimized
based on eq(51c), from one ionic strength to another,

{G) Method HA (HOLL All Mixing Coefficients)?®!

9o = [Ag + Bg + I(Ay + By)l/2 (52a)
g'c = -(Ay + By) (52b)
g1 = (By - Aq)/3 (52¢)
9'y= 0 (52d)
By = 2[Aw(I) + vI*®] - A, , By B 3gy + Ay (52e)

where A,w(I) are the same as in eq(49). We also note that 9o’ is a function of I while
g4 1s a constant although both Ay and B4 are functions of I.

V. INDIRECT METHOD OF FRIEDMAN

A11 the above mentioned methods require the knowledge of the experimental data of
one of the electrolytes, this need not be the case in the ab initio method which needs
only the computationof the radial correlation functions. Here wewill present an indirect
method which was developed by Friedman and his coworker.[8] In this method we have to
compute the generalized compressibility functionl45,46

dc;
M'iJ s (_’_:-;_)T,Pv z (C181J + C‘iG'ijcj)/RT (53)
where
Gy = j [g1j(r) - 1)4xrdr (54)
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and g44(r) is the radial correlation function. Athough Mij is a singular matrix for jonic
elactrolytes, Friedman was able to handle this singularity and compute the activity
coefficients of a mixed electrolyte in an indirect way. Let us define

1o = 21(21 - 23)/2 , g = 22(22 - 23)/2 (55a)
h = (22 - 21)/(223 -2y - 22) , D = M11M22 - M12M21 (55b)
then

AInTa/ DT = [vat(coMyp = cMap)/(vpD) - 1)/1 (56a)

dInyg/d1 = [vg*t(cyMyy - coMyq)/(vgD) - 1)/1 (56b)
o gl (Mip Mo LIS

dIMp/dY = Gl ) i 2301 - oyl (56c)
Jozpogpl_ 2y gy I (M2 My

oImg/dy = g {[y 231 - hY)] RTD " 14 g )] (569)

At a fixed I we can compute various values of d1nv,/d y at different y according
to eq(56c), then these data may be used to optimize A, from The following eq:

M-
dInp/dy = zyl n's-:o [An(-DNYN - 2nyy™™ 1)) (57)

Similarly we can optimize B, coefficients. Finally, from these A, and B, we can compute
Iny, and 1nvg respectively from eqs(14a) and (14b). Furthermore, g, and g’, can also
be obtained from eqs(23b) and (23d).

Vi. COMPARISON OF THE VARIOUS METHODS

Figure 1 shows the accuracies of the various methods for the overall results of
nine symemtrical m1xtures[43]. Whether the HOLL is satisfied or not is indicated by Y
(yes) or N (no). The number of points whose absolute differences llogYA(ca1) - logYA(obs¥
have exceeded the experimental tolerance of 0.002 as estimated by Bates and Robinson
are shown inside the parentheses. Simiarly, Figure 2 shows the accuracies of the methods
for the overall results of eight unsymemtrical mixtures.[42]

1.6 T T T = T T T T T T -
.40, -
1.2— -
1.0~ -1
MO
~ 0.8 -
b
0.6 -
0.4 -
0.2 -
1 ] L I 1 1 ' i d i
S P-11 P-111 P-4 P-6 1 L2 HA LC LA
Fig. 1. Overall results of nine symmetrical binary mixtures

NaCl+NaX, X = acetate, propionate, hydrogen malonate,
hydrogen succinate & trichloroacetate
NaBr+NaX, X = formate, acetate and propionate

HC14+KC1 (374 data points)
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10" e
9 7 Y
8
7 —
6 (4)
5
47 Fig. 2
Overall results of eight unsymmetrical
binary mixtures HCl + MCl,, M = Ca,Ba,
3 2 Sr,Mn,Ni,Mg,Co, and HBr + SrBr2
o (279 data points)
2 ] T T T T
LA Ha Le H P4t P-11 $

The accuracies of the various methods may be explained by their g, expressions,
which can generally be written as

9o(I) = Fy(I) + f(I)I + f4(I)I2 (58)

We see that the method S is the only method in which all f; are constants. But since
it 1s also the only method with non zero f3, its results can be better than the Pitzer
methods. On the other hand, method H for unsymmetrical mxitures, methods L1 and L2 for
symmetrical mixtures, and method P all have used I-dependent fy but constant f,. The
reason that P-IV are more accurate than P-II is self obvious especially for symemtrical
mixtures. The method H is more accurate than method P probably because of the I* factor
and the non zero g4, whereas L1 and P4 have same accuracy because their 9o expressions
are nearly the same. By right L2 should be more accurate than L1 as it is the case. Al}
the other methods LA, LC and HA have employed I-dependent f4 and f, and therefore produced
the best results. The method A is probably the best because all its mixing coefficients
were optimized at different ionic strengths independently, whereas the other two methods
have to make use of the results at other ionic strengths.

Concerning the problem of the HOLL requirement, we know that by,q and by, in method
S must be of the same sign for symmetrical mixtures and opposite signs for unsymemtrical
mixtures. Although the results of all the eight unsymemtrical mixtures have satisfied
the HOLL, most of the symmetrical mixtures we have tested do not. This has cast some
doubt on this method, because it is very difficult to dictate the outcome of the signs
of by parameters. As for Pitzer's methods, P-II does not satisfy HOLL for symmetrical
mixtures although it does satisfy HOLL for unsymmetrical mixtures but with worse accuracy
as compared to other methods. P-III does not satisfy HOLL for unsymmetrical mixtures
and for most of the symmetrical mixtures. However, the chocie of optimum k value will
significantly improve the accuracies at the expense of HOLL. Both P4 and P4f satisfied
HOLL. For the other remaining methods they all have satisfied the HOLL except LA and
LC where the test of HOLL is not feasible until we can substantially improve our
experimental techniques.
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APPENDIX 1. SUMMARY OF THE METHOD FOR SYMMETRICAL BINARY

MIXTURES

HOLL f1 f2 f3 99 g’o
P K30 Kew 0 0 £ 1+ f5
P-I1 N ©=%e Kgw 0 0 fs
P-III N/Y ©=30(1+Kkh) Kgw 0 0 4+ f,
P4 Y  0=6oh+uI¥ KeW 0 0 fly+f2
P6 Y 0=%0(1+sh) Kew 0 0 £y + fp
S N/Y  bot bo2/2 bo3/3 0 bg2/2 +2bg31/3
RWR Y 2explQ/(1+aoI") ]k 0 0 fl1+ f2
L1 Y rexp(Q) +vI¥ n 0 const fly+fy
L2 Y Aexp(BI'?) +vI¥ 0 const fly+fs
LA ? (A°+Bo)/2 Ay 0 (B —A1)/3=0 —-2A4
LC ? (Ag+Bgl)/2 Ay 0 91211)=91(12)=0 ~2A4
HA Y rexp(Q) +vI¥ Aq4+1.5 g4 0 const -2f,

9o = f1 + fol + f312, @ = 6292A1 , 65 = go(0)exp(Q)/K3
At low I, sign (gg) = sign (g’g)

APPENDIX 2. SUMMARY OF THE METHODS FOR UNSYMMETRICAL BINARY

MIXTURES
HOLL f, f f, 9 g’
P KiBux * KoBpx * K KClyyt KsClyx + KW 0 KiClux * KeClyx t KW F + 1,
P-I N  O=const f,
p-11 v 6-F8+%0 £, + 1,
P-III N 6=56(1+kh) £, +f,
P4f Y O =6p+up f,'+f,
s Y by b/ 2 bgy/3 0 f,+2f,1
H Y AlInl +vI»? B 0 const f'+f,
LA ?  (Ag+By)/2 A, 0 (B,-A)/3=0 -2A,
Lc 7 (Ag+By)/2 A, 0 9,(I1)=9,(I,)=0  -2A,
HA Y AlnI+vI¥ Aj+1.5 g, 0 const -2f,
(By=2f,-Ay) (B,=2f,-A,)

9o * f1 + f2I + f312, A = 3(21 - 22)2A‘2, 60 = (AInl - Lo)/K3
At Tow I, sign (gg) = - sign (9'g).






