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Abstract 
In t h i s  a r t i c l e  a novel approach, based on t h e  concept of osmotic 
equilibrium, i s  presented f o r  t he  calculation of thermodynamic propert ies  
of solutions.  This thermodynamic framework i s  inspired on t h e  paralell ism 
between the  "soiute-solvent" and "gas-vacuum'' systems, init ially 
established by tha  McMillan-Mayer theory (Hill [ l ] ) .  The proposed 
formalism is  developed within t h e  context  of t h e  Legendre Transformation 
of t h e  internal  znergy with respect  entropy, volume and mole numbers of 
solvent species. Th;.refore, t he  equation of s t a t e  express  a mathematical  
re la t ionship amorlg osmotic pressure,  temperature ,  volume, mole numbers of 
solute  species,  and chemical potent ia ls  of solvent species. In the  
t radi t ional  approach the  equation of state r e l a t e s  pressure,  temperature ,  
volume and mole nun:bers of a l l  species. 

INTRODUCTION 

There is  a g r e a t  r.umber of semi-empirical models t h a t  can be used f o r  modeling 
electrolyte  solutions.  These models are mostly based on the  assumption t h a t  t h e  excess Gibbs 
f r e e  energy of  an  electrolyte  :system can be wr i t t en  as fol lows (Cardoso et  al .  I211 : 

E E  E 
G = GLR + GSR (1) 

The long-range contribution (G:R) is  generally taken into account by means of the 

Debye - Huckel expression. For the  short-range t e r m  (G  1 several  types of models have been 

used (e.g. NRTL and UNIQUAC models). 
As previously remarked by Cardoso and O'Connell [31, t h e r e  a r e  some difficult ies in 

establishing a r igorous theoret ical  just i f icat ion f o r  adding up LR and SR contributions due 
t o  d i f f e ren t  solution theories  used in the i r  derivations.  The LR t e r m  i s  in general  derived 
f r o m  t h e  McMillan-Mayer Theory (T,V, solvent chemical potentials,  solute  mole numbers),  while 
t h e  SR contribution is ob ta inc l  in t h e  Lewis-Randall system (T,P,  species mole numbers).  

This a r t i c l e  discusses a new methodology f o r  calculating thermodynamic propert ies  of 
non-ideal solutions,  based on osmotic equilibrium (I7 f ramework) .  The proposed approach lies 
on t h e  paralell ism between t h e  "solute-solvent' ' and "gas-vacuum'' systems, initially 
established by McMillan-Mayer theory (Hill [ l] ,  Friedman [41). 

E 
SR 

n FRAMEWORK 

The internal  energy f o r  a multicomponent system can be wr i t t en  as fol lows : 

U = U(S,V,N,,N,) 
where,  

S ,  V : system entrcpy and volume 
N, : solvent mole numbers (n = 1, ..., NSOLV) 
N, : solute  mole numbers ( i  = 1 ,..., NSOLU) 
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The Legendre Transformation of the internal energy with respect t o  S, V and all N, 
allows us  t o  define a new thermodynamic potential : 

P = C'LT,P,pn,Ni) = U - TS + PV - 1 pnN, 
n 

which is equivalent t o  

q = NT,P,pn,Ni) = 1 piNi 
i 

where, 
T, P : system temperalure and pressure 
pn 
pi 

: chemical potential of solvent n 
: chemical potential of solute i 

The differential form :Jf (3) o r  (4) is  expressed as 

du -SdT + VdP - c Nndpn + 1 pidN, 
n i 

(5) 

which explicitly shows the dependence of 9 on its natural coordinates (T,P,pn,Ni). 
In order  t o  introduce the concept of osmotic pressure we must a t tach t o  the system a 

f ini te  solvent compartment. -:he compartment comunicates with the system through a suitable 
wall perfectly permeable tc all solvent species and impermeable t o  all solute species. We 
assume tha t  both system and solvent compartment a r e  thermodynamically equilibrated with 
respect t o  temperature and the chemical potentials of the solvent species. 

This combined system (system + solvent compartment) has i t s  internal temperature and 
chemical potential of sclvent species firmly established by means of equilibrated contacts 
with reservoirs of heat and solvent species (Callen 151). Each one of these reservoirs i s  a 
very large system with uniform temperature and chemical potential f o r  an individual solvent. 
I t  comunicates with the combined system through an appropriate wall permeable only t o  heat 
and t o  tha t  solvent. 

The intensive prop-rties of the solvent compartment a r e  kept constant due the contact 
with the reservoirs and do ?lot depend on the s ta te  of the original system. By denoting with 
an index "o" the  s t a t e  of' the solvent compartment, we can express the correspondent Gibbs- 
Duhem equation a s  : 

-SodT + VodPo - (6) 

Therefore the solvent cumpitrtment pressure Po is only dependent of the external fields 

The osmotic pressure (TI) is the difference between the system equilibrium pressure (P) 
(T, p,) . 

and Po. Thus 
r r = P - P 0  (7)  

The differential form of the thermodynamical potential can be recasted by using eqs (51, (6) 
and ( 7 )  as 

(8) 

where i t  turns  out that  the osmotic pressure has now the s ta tus  of a system independent 
coordinate. I t  i s  possible t o  write, by means of eq (81, the following partial derivatives : 
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Maxwell relations can be straightforwardly derived. For example : 
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In these formulae the second derivatives a r e  essentially analogous t o  the so defined partial 

molar property operator ('JaIi Ness and Abott [6]). The properties vi and 3, embody the same 
features  of the  familiar partial molar properties. For instance, by means of eqs (4),(9),(11) 
and (12) one can easily shcw that  

V = 1 NiVi 
i 

S = 1 N i s i  
i 

(13) 

A N  IDEAL GAS SOLUTE MODEL 

In the  present context, we define an ideal solution by the following relationship f o r  
the  solute species chemical potential : 

where p;(T,l,p,,) is the chemical potential of solute species i at system temperature T, 
solvent chemical potentia!s p,, and unity osmotic pressure, zi is the solvent f ree  solute mole 
fract ion and R is the gas  constant. Equation (141, written f o r  the solute species in a 
solvent medium, is  in close analogy with the chemical potential of a gas  species belonging to  
an ideal gas  mixture in a "vacuum medium". 

With formulae (11) a,,d (13) one gets  the well known Van't Hoff equation f o r  the 
osmotic pressure in dilute multisolute systems : 

VID = [ N,]RT/TT (15) 

I t  also can be derived froni this model the following properties of mixing f o r  solute mixtures 
prepared at constant T,TI and ,un : 

These resul ts  a r e  identical t o  the familiar property changes of mixing f o r  "conventional" 
ideal gases [61. 

THE REAL SOLUTION CASE 

A real  solution framcwork may now be defined in close analogy with the classical 
approach adopted f o r  nun-iclcal gas mixtures [61. Differentiating (14) at constant T,pn one 
arrives : 

dpiD = RTdln(TIzi) (const. T,pn) (17) 

Relationship (17) can then he used t o  evaluate pl changes f o r  processes carried on a t  
constant T and pn. Thjs practical feature  can now be readily extended t o  real  systems by 
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introducing a fugaci ty  fur,cr:cn in the  Lewis sense : 

dpi = RTdlnf;' (const .  T,pn)  (18) 

For  t h e  sake of completefiess, we have t o  choose t h e  value of a n  integrat ion constant  in the 
fugaci ty  definit ion.  We set th i s  constant  such t h a t  

fI)''ID = nz, (19) 

V1dn = RTdlnfI)' (const.  T, pn, zi 1 (20)  

Using eq  (11) and (18) we can wr i t e  
- 

By s t anda rd  algebrical  manipulations, integrat ing f r o m  ll=O t o  ll=ll at constant  T,pn,zi, and 
assuming ideal behavior (eq (1'3)) at n=O, one g e t s  

Relationship (21) can be used f o r  calculating osmotic fugaci ty  (fI)') provided an  
equation of s t a t e  f o r  t he  o s n o t i c  pressure is  given in t e r m s  of V,T,pn and zi. In th i s  way, 
i t  i s  remarkable  t h a t  a l l  fo:.malisrns f o r  calculating fugaci ty  in gas mixtures ,  can be readily 
extended f o r  modeling non-ideal solutions.  Therefore  the  proposed approach allows one t o  
avoid t h e  more t radi t ional  foimalism based on t h e  excess  Gibbs f r e e  energy. 

Based on the  TI f ramework it is  possible t o  do calculations of thermodynamic propert ies  
of e lectrolyte  systems by rneiiis of a semi-empirical model f o r  t h e  osmotic pressure as follows 

TI = nLR + nsR (22)  

where TILR and llsR s t and  f o r  Debye-Huckel and a Van de r  Waals type equation of state 
contributions.  Experimental  osmotic pressure d a t a  can be used t o  f i t  necessary model 
parameters .  

The present  framcawo-k is  similar with the  so called ISAC theory (Isoactive-Solvent) 
proposed by Myers and Myerr; [71 in the  sense t h a t  t h e  same thermodynamic potential  i s  used. 
Nevertheless, ISAC theory , i j op t s  a excess  f r e e  energy approach which leads t o  activity 
coeff ic ient  as basic func i io t s .  
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