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Abstract

In this article a novel approach, based on the concept of osmotic
equilibrium, is presented for the calculation of thermodynamic properties
of solutions. This thermodynamic framework is inspired on the paralellism
between the  "solute-solvent" and ‘“gas-vacuum" systems, initially
established by tha McMillan-Mayer theory (Hill [1]). The proposed
formalism is developed within the context of the Legendre Transformation
of the internal :nergy with respect entropy, volume and mole numbers of
solvent species. Tharefore, the equation of state express a mathematical
relationship among osmotic pressure, temperature, volume, mole numbers of
solute species, and chemical potentials of solvent species. In the
traditional approach the equation of state relates pressure, temperature,
volume and mole numbers of all species.

INTRODUCTION

There is a great number of semi-empirical models that can be used for modeling
electrolyte solutions. These models are mostly based on the assumption that the excess Gibbs
free energy of an electrolyte system can be written as follows (Cardoso et al. [2]) :

¢F =6t +cF 1
LR SR

The long-range contribution (GER) is generally taken into account by means of the

Debye ~ Hickel expression. For the short-range term (GER) several types of models have been

used (e.g. NRTL and UNIQUAC models).

As previously remarked by Cardoso and O’Connell [3], there are some difficulties in
establishing a rigorous theoretical justification for adding up LR and SR contributions due
to different solution theories used in their derivations. The LR term is in general derived
from the McMillan-Mayer Theory (T,V, solvent chemical potentials, solute mole numbers), while
the SR contribution is obtained in the Lewis-Randall system (T,P, species mole numbers).

This article discusses a new methodology for calculating thermodynamic properties of
non-ideal solutions, based on osmotic equilibrium (I framework). The proposed approach lies
on the paralellism between the ‘"solute-solvent" and ‘"gas-vacuum" systems, initially
established by McMillan-Mayer theory (Hill {1], Friedman [4]).

I FRAMEWORK

The internal energy for a multicomponent system can be written as follows :

U = U(S,V,N,,N,) (2)
where,
S, V : system entropy and volume
N, : solvent mole numbers (n = 1,...,NSOLV)
N; : sclute mole numbers (i = 1,...,NSOLU)
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The Legendre Transformation of the internal energy with respect to S, V and all N,
allows us to define a new thermodynamic potential :

¥ = UT,PuyN) = U - TS + PV - ) N, 3
n
which is equivalent to
¥ = UTPu,N) = ) N, 4)
T
where,
T, P : system temperature and pressure
M, : chemical potential of solvent n
iy chemical potential of solute i

The differential form of (3) or (4) is expressed as

d¥ = -SdT + VdP - Z N, du, + Z ydN; )
L i

which explicitly shows the dependence of ¥ on its natural coordinates (T,P,u,N,).

In order to introduce the concept of osmotic pressure we must attach to the system a
finite solvent compartment. “"he compartment comunicates with the system through a suitable
wall perfectly permeable to all solvent species and impermeable to all solute species. We
assume that both system and solvent compartment are thermodynamically equilibrated with
respect to temperature and the chemical potentials of the solvent species.

This combined system (system + solvent compartment) has its internal temperature and
chemical potential of sclvent species firmly established by means of equilibrated contacts
with reservoirs of heat and solvent species (Callen [S]). Each one of these reservoirs is a
very large system with uniform temperature and chemical potential for an individual solvent.
It comunicates with the combined system through an appropriate wall permeable only to heat
and to that solvent.

The intensive properties of the solvent compartment are Kkept constant due the contact
with the reservoirs and do uot depend on the state of the original system. By denoting with
an index "o" the state of the solvent compartment, we can express the correspondent Gibbs-
Duhem equation as :

-SodT + VodPg - ) Npduy = 0 (6)
n

Therefore the solvent compuartment pressure P, is only dependent of the external fields
(T,up).

The osmotic pressure (1) is the difference between the system equilibrium pressure (P)
and P,. Thus

T=P-P, (7

The differential form of the thermodynamical potential can be recasted by using eqs (5), (6)
and (7) as
dv = {-s + (v./vo;soJ dT + vdnm + Z [-Nn + (V/vo)Ng] du, + Z p,dN; (8)
T

n

where it turns out that the osmotic pressure has now the status of a system independent
coordinate. It is possible to write, by means of eq (8), the following partial derivatives :

&
8T LN U,

1
<
©

=S + (V/V4)S, , [%]TN .
©pen

(10)

i
x

[Z‘I’ ] N, + (V/VING [%‘%.] =
Bn) TN K 1) TN,



Thermodynamics of solutions based on osmotic equilibrium 385

Maxwell relations can be straightforwardly derived. For example :

[ﬁ&i ev_

av —
7 = =V 1)
ol ]T»Npun [3N 1] TN,

,
[.‘.9_“_1} - La(‘s + (V/Vo)So) = -5, + (Se/Vo), (12)
IT’Ni’“n

T oN, JT'H'NJ‘“n

In these formulae the second derivatives are essentially analogous to the so defined partial

molar property operator (Van Ness and Abott [6]). The properties V, and S, embody the same

features of the familiar partial molar properties. For instance, by means of egs (4},(9),(11)
and (12) one can easily shcw that ‘

V=) N, , S =) NS (13)
i i

AN IDEAL GAS SOLUTE MODEL

In the present context, we define an ideal solution by the following relationship for
the solute species chemical potential :

u® = Li(T,Lu,) + RTIn(Tz,) (14)

*
where p,(T,l,u,) is the chemical potential of solute species i at system temperature T,
solvent chemical potentials p, and unity osmotic pressure, z; is the solvent free solute mole

fraction and R is the gas constant. Equation (14), written for the solute species in a
solvent medium, is in close analogy with the chemical potential of a gas species belonging to
an ideal gas mixture in a "vacuum medium".

With formulae (11) aud (13) one gets the well known Van’t Hoff equation for the
osmotic pressure in dilute multisolute systems :

7° = R/ , v = [ ) NJ RT/T (15)
i

It also can be derived from this model the following properties of mixing for solute mixtures
prepared at constant T,T and u, :

AV = o , "™ = - R} Njinz, (16)

i

These results are identical to the familiar property changes of mixing for "conventional”
ideal gases [6].

THE REAL SOLUTION CASE

A real solution framework may now be defined in close analogy with the classical
approach adopted for non-iccal gas mixtures [6]. Differentiating (14) at constant T,u, one
arrives :

dui” = RTdIn(Ilz,) (const. T,u,) (17)

Relationship (17) can then be used to evaluate piD changes for processes carried on at
constant T and u,. This practical feature can now be readily extended to real systems by
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introducing a fugacity funccion in the Lewis sense :

du, = RTdInf{’ (const. T,u,) (18)

For the sake of completeness, we have to choose the value of an integration constant in the
fugacity definition. We set this constant such that

00 = 1z (19)
Using eq (11) and (I18) we can write
V,dll = RTdInf}" (const. T,up,z) (20)

By standard algebrical manipulations, integrating from T=0 to =T at constant T,u,z; and
assuming ideal behavior (eq (19)) at II=0, one gets

In(f%5/mz,) = Jn RTINS am (21)
p/M2) = | R W

Relationship (21) can be used for calculating osmotic fugacity (ffs) provided an

equation of state for the osmotic pressure is given in terms of V,T,u, and z;. In this way,

it is remarkable that all formalisms for calculating fugacity in gas mixtures, can be readily
extended for modeling non-ideal solutions. Therefore the proposed approach allows one to
avoid the more traditional formalism based on the excess Gibbs free energy.

Based on the 1T framework it is possible to do calculations of thermodynamic properties
of electrolyte systems by means of a semi-empirical model for the osmotic pressure as follows

M=y + Mg (22)

where T, and Mg, stand for Debye-Hiickel and a Van der Waals type equation of state
contributions. Experimental osmotic pressure data can be used to fit necessary model
parameters.

The present framework Is similar with the so called ISAC theory (Isoactive-Solvent)
proposed by Myers and Myers [7] in the sense that the same thermodynamic potential is used.
Nevertheless, ISAC theory adopts a excess free energy approach which leads to activity
coefficient as basic functions.
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