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Abstract — Solvation forces in electrolyte solutions may advantageously be treated with sta-
tistical mechanical methods from a unique point of view on the Born-Oppenheimer (BO) level.
Integral equation techniques of the RHNC type are used and the potentials of mean force and
the correlation functions yielding the excess functions are estimated for typical model solvents
such as nonpolar and polar hard spheres or Lennard-Jones particles etc. The solvation contri-
butions (Gurney potentials) to the effective interactions are presented and their effects in real
solutions are discussed.

INTRODUCTION

Information on ion solvation commonly is accessible from the excess functions of thermodynamic or transport properties
such as osmotic and activity coeflicients, heats of dilution or electrolyte conductivity obtained as the functionals of
solvent averaged mean force potentials. This treatment at the McMillan-Mayer (MM) level represents ions as moving
particles interacting by average forces in a structureless solvent characterized by its viscosity and relative permittivity.
At MM-level solvation effects can only be indirectly reflected by the parameters of the ionic mean force potentials
which commonly are subdivided into the contributions from the long-range Coulomb interactions and the short-range
repulsive and attractive interactions. The form and relative magnitude of these contributions strongly affect the ion
distributions and the structural and thermodynamic excess quantities. Ion association (ref. 1), ‘coulombic unmixing’
(ref. 2) and ‘hydrophobic unmixing’ (rel. 3) are interpreted in the framework of such interionic theories in terms of
effective interactions at infinite dilution.

It is advantageous for the understanding of the short-range eflects usually described by ‘overlapping of Gurney co-
spheres’ to investigate the leading potential terms at the BO-level where both the solvent molecules and the ions are
structured interacting particles of the electrolyte solution; for the volume and surface properties see (refs. 4-8).

The model calculations as well as the experiments (ref. 9) at BO-level reflect a variety of features affecting the molec-
ular pair distribution functions. The results from BO calculations and those of the solvent averaging description at the
McMillan-Mayer level may be compared with the help of integral equation techniques based on the Ornstein-Zernike
equation and a Reference Hypernetted Chain (RHNC) closure relation. The underlying theory and the numerical pro-
cedures are given in (refs. 7,10-12). In the present study the defining equations for the mean force potentials at BO-
and MM-level are discussed. It is shown how the Gurney term of the ion-ion interactions reproduces the properties
of the solvent structure at the MM-levcl and how the solvent structure influences the Coulomb interaction via the
solvent permittivity ¢. In a first step the contribution of solvent averaged short-range non electrostatic interactions
(we call them reference system (RSB interactions) to the solvation forces is studied with the help of hard and soft
spheres and Lennard-Jones particles. In a second step we introduce electrostatic interactions between the ions and
the solvent molecules considered as polar hard spheres and Stockmayer particles.

EFFECTIVE IONIC INTERACTION IN A MOLECULAR SOLVENT

The effective interaction between two ions a and b at position 1 and 2 in a solution is given by the mean force
potential (pmf) wa3(12) related to the ion—ion radial distribution function g43(12) = 1 + hes(12) in the mixture by the
relationship

wap(12) = —kpT In(1 + hep(12)) ; a,b=+,~ (1)
where h4;(12) is the so—called total correlation function. The pmf wg; can be split into three parts
wap(12) = uf$(12) + w3PV (12) + wif(12) (2)

In eq. (2) uBS(12) is the contribution of direct short-range interactions between ions a and b containing isotropic
or anisotropic repulsive and attractive contributions, e.g. nteraction potentials of the hard sphere, Lennard-Jones,

dumbbell, tetrahedron etc. types. In dilute ionic systems the long-range contribution to the pmf, wlR, is a Debye-
type interaction, i.e. a Coulomb interaction between the ions, screened by the permittivity e(n,, n;) of the solution
and by a Debye shielding exponent «p
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In egs. 3a and b kp is the Boltzmann constant and T is the Kelvin temperature; z,, 2z, are the valences of the
ions a and b, e is the elementary charge; n, and n; are the number densities of the solvent molecules and the ions,
respectively; ¢p and €(n,, n;) are the permittivity of vacuum and the relative permittivity of the solution at the particle

densities n, and n;; r is the interionic distance. In the case of infinitely dilute solutions (n; — 0, kp — 0) wiF is the

Coulomb interaction w$PUU(r) with ¢(n,) as the relative permittivity of the pure solvent
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The relative Fermittivity ¢(ny,n;) must be calculated with the help of the statistical mechanical theory of the model
solvent or solution, including the electrostatic interactions between solvent molecules and between ions and solvent
molecules, or else be treated as an experimental input parameter.

The solvation interaction contribution w3P™ in eq. (2) can be subdivided into two parts, one resulting from the short-

range interactions of all constituents of the system, the reference interaction wf?Lv'RS(IZ), the other one stemming

from the long-range electrostatic interactions between all species, wf?l‘v'm’( 12)

wge Y (12) = wP™ R (12) + w P B (12) (5)

On the other hand the;main contribution at the MM-level to the radial distribution function g¥{M(12) of a dilute
system of ions in a structureless solvent is given by

M(12) = exp(-A(uES(12) + wlf(12))) s A= 1/ksT (6)

with €(n,,n;) as a given input parameter. The comparison of eqs. (1) and (6) shows that in the case of infinite dilution

lim gas(12) = lim (gMM(12) exp (~puSPY (12))) = %(12) (7)
02(12) = exp (-B(u5F (12) + w3y 0(12) + w§PV(12))) (®)

showing that the solvation interactions calculated at BO-level in the case of infinitely dilute solutions are equivalent
to the ad hoc introduced Gurney cosphere interactions at MM-level. These cosphere interactions are often estimated
by)ﬁt procedures from a comparison with thermodynamic and transport excess functions of electrolyte solutions (ref.
11).

SOLVENT MODELS WITHOUT ELECTROSTATIC INTERACTIONS

S,?LV’RS to the solvation of a diluted gas of

Our first model calculations concern the influence of the contribution w;
charged particles in a molecular model solvent.

This can be studied by the comparison of the ion—ion radial distribution functions in a homogeneous structureless
solvent of permittivity ¢ (MM-level) with the distribution of an equal number of ions in the mixture with solvent
molecules (BO-level). The solvent molecules exert no electrostatic interactions on the ions, However, for the sake of
formal consistency with the MM-calculations we introduce the factor 1/¢(n,) of the Coulomb ion-ion interactions also
for the BO-calculations.

The calculations of ion-ion radial distribution functions at BO- and MM-level are established with the help of a
reference-HINC-technique based on a method of generalized virial expansions (ref. 12).

The simple assumption of equal reference interactions for ions and solvent molecules yields WOV RS o5 the difference

of the mean force potential of the system composed only of reference interactions and direct usbhort—range interactions
RS
Yab (12)

wiPVRS(12) = —kpT (1 + A% (12)) - u25(12) ©

Fig: la shows the contribution wf,?w'“s

all particles

for reference systems where uf$(12) is a Lennard-Jones potential ul(r) for

ul(r) = dery ((o/r)'? = (0/7)°) (10)

at reduced distance r/¢, reduced interaction strength of €],y = er3/kpT = 0.5, and three reduced particle densities n* =
No3/V = 0.5, 0.7, 1.0; N is the number of molecules, and V' is the volume of the system; o is the distance parameter
of the Lennard-Jones potential, where it has zero value. The position of the potential minimum ul) (rpin) = —¢ is
given by rmin = 2'/%0. i

Fig. la shows that the potential contribution wf,?w'ns(u) is negative for small r and of damped oscillating form,
and yields an additional attraction between the ions if their center-to—center distance r is less than 1.20. This effect
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is independent of the attractive part of the Lennard-Jones interaction. It stems from a probability force due to the
‘granularity’ of the solvent yielding the repulsive short-range interactions between all particles in the solution; equal
contributions to the ion-ion interactions also are produced in the hard and soft sphere model solvents. This is shown

in Fig. 1b, where the solvation potentials wfbow’“s(w) of Lennard-Jones type are compared with those derived from

a soft sphere reference system described by a n-12-potential of the form

u"3(r) = den_12(0/r)"? (11)
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Fig. 1. Solvation contribution wSOLY.RS /kpT to the mean force potential. a: Lennard-Jones sys-
tems ({1), (2), (3) n* = 0.5, 0.7, 1.0); b: a comparison of (1) Lennard-Jones and (2) soft sphere
systems (see the text).

In eq. (11) €n—12 is the potential strength and o is a distance parameter. With n* = No3/V and ¢},_,, = en—12/ksT,
wbeLv'Rs(M) is given in Fig. 1b for a reduced density n* = 0.7 and for ¢}, ;5 = ¢} ; = 0.5.

In the next figures it is shown, how these contributions wifw'Rs(m) change the ion—ion distributions of a dilute

ion gas imbedded in a nonpolar molecular model solvent. Figs. 2a and 2b show the ion-ion radial distribution
functions (rdf) of charged hard spheres in a continuous solvent (MM-level) for an aqueous 2-2 model electrolyte
solution of moderate concentration. The coupling strength for the Coulomb interactions is given by the Bjerrum
parameter b = Ig/R = 6.8166 (g = (ze)?/(47eokpT) is the Bjerrum length). The system has a reduced ion density
n; = (Ny + N_)R3/V = 0.06; N and N_ are the numbers of positive and negative ions, R is the hard sphere
diameter, and V is the volume of the solution.

ol i

Fig. 2. Radial ion-ion distribution functions a: (+-) and b: (
continuous solvent ((1) MM-level) and in a hard sphere solvent ((2

++) of charged hard spheres in a
) BO-level).

These curves may be compared with the results of a calculation where the ions are imbedded in a hard sphere solvent
of equal permittivity ¢(n,) in such a way, that the total reduced number density is n* = n} + nf = 0.7534 (rdf on
BO-level). The reduced number density of the solvent is n} = N,R*/V, and N, is the number of solvent molecules.

Adding the contribution wf,?Lv’Rs to the mean force potential between the ions already leads to a pronounced increase
of contact probabilities of pairs (+—) and contact of pairs (++), and oscillations around the long-range continuum
contribution wif* with a remarkable peak at r/R & 2 in the rdf (++) due to the second minimum in wus?w'“s.
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Fig. 3. Radial ion-ion distribution functions a: (+-) and b: (++) of charged soft spheres in
a continuous solvent ((1), (2) b = 2, 4; MM-level) and in a soft sphere solvent ((3), (4) & = 2, 4;
BO-level).

When the ions and solvent molecules undergo soft sphere reference interactions a similar behaviour of the ion-ion
rdf is observed at the BO-level shown in Figs. 3a and b for a soft sphere model with short-range interactions given
by eq. (11) where €5_;5 = 0.5. The comparison is made of the radial distribution functions of ions in a continuum
(MM-level) and in a molecular solvent with a reduced number density n! = 0.69 (BO-level); b again is the Bjerrum
parameter, b = Ig /0. Two ionic subsystems with different Coulomb interactions are presented, characterized by values
of b = 2 and b = 4. The reduced number density is n! = N;03/V = 0.01 in both cases.
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Fig. 4. Radial ion-ion distribution functions a: (+—=) and b: (++) of charged Lennard-Jones
particles in a continuous solvent ((1), (2) b = 2, 4; MM-level) and in a Lennard-Jones solvent ({3),
(4) b= 2, 4; BO-level).

The reference system interactions of more realistic models of the solution contain contributions from attractive disper-
sion forces, such as modelled by a Lennard-Jones potential (eq. (10)). The corresponding radial ion-ion distribution
functions are shown in Figs. 4a and 4b, where the ion-ion rdf of mixtures of Lennard-Jones (LJ)~ and Lennard-
Jones—Coulomb (LJC)-particles are shown under equal conditions as for molecules and ions with only soft repulsive
core interactions. The Bjerrum parameter for the LJC-interactions (the sum of the contributions w$PVY (eq. (4))
and u? (eq. (10))) uses o as the distance parameter defined by eq. (10). According to eq. (7) the differences between
both kinds of rdf are caused by the solvation interaction term given by eq. (9) shown in Figs. 1. A comparison of

Figs. 4a and 4b with Figs. 2 and 3 further shows that the repulsive part of the reference interactions determines the
SOLV,RS

shape and strength of the contribution wj, of the solvation potential.

Fig. 5 shows the pmf in the case of a very dilute solution of an aqueous 1-1 model electrolyte (b = 2 and n;} = 0.001).
Structural oscillations of the solvation potential due to the reference system contribution occur ‘in phase’ for the (++)
and (+-) potentials. Additional attraction between ions of unlike and equal charge appears at distances r < 1.2,
A secondary potential maximum occurs in both cases for » > 1.5¢0. These effects increase at increasing ion size and
decreasing charge density and at high solvent densities.
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INFLUENCE OF THE ELECTROSTATIC CONTRIBUTION

Solvent molecules exert electrostatic forces on the ions leading to the static permittivity e(n,,n;) > 1 and to the term
wi,?w'm‘ of the solvation potential.

In the framework of a statistical mechanical theory at BO-level the permittivity of the solvent ¢(n,) must be calculated
from the properties of the solvent molecules. This is not a trivial problem. The angle~dependent interactions between
the solvent molecules lead to two—particle distribution functions in terms of rotational invariants from which the static
permittivity €(n,) is accessible, usually with the help of MC— or MD-calculations or numerical solution of nonlinear
integral equations for the correlation functions (see e.g. ref. 8 and the references quoted there). For a model solution
of charged hard spheres Sions) imbedded in a solvent of hard spheres with central point dipoles the pair correlation
functions and consequently also its thermodynamic properties may be calculated via mean spherical approximation
(MSA) (refs. 4-6 and references quoted there). The MSA is based on a system of integral equations linearized with
respect to the long-range interactions; it does not account for the complete effect of ion pairing and does not yield the
correct value of the permittivity of a highly polar solvent. However, an important feature of the MSA is its simplicity.
As an example, the internal excess energy E°* and the permittivity e(n,) of a dipolar hard sphere solvent are given
by the relationships (ref. 19).

(B [N,k T)M** = — (3ynp) / (21ms) (12)

and e(n)™A = q(mp) /a(-m0/2) 5 o(z) = (1+22)*/(1 - z)*. (13a,b)

In these equations the parameter 7yg is the packing fraction, related to the reduced number density n} = N, R3/V of
the solvent: nus = 7n;/6. R is the diameter of the dipolar hard spheres. The parameter np depends on the dipolar
coupling parameter y which in turn is connected with the dipolar moment y of the solvent molecules

3y =q(m) —¢(-1p/2) ; =4mnj(0*)?/9;  (u")® = #*/(R*kpT) (14a,b,c)

The mean force potential between two charged hard spheres in an infinitely dilute solution of dipolar hard spheres is
also calculable. The electrostatic contribution to the solvation potential derived from this calculation has the general

form (refs. 5-7)
wiy WV EY = Wit (e(ny) = 1) Gas(r,10) (15)

At infinite dilution wlF is given by the Coulomb potential (eq. (4)) and e(n,) is the permittivity of the solvent, eq.
13). The function G is of damped oscillating form, tending to zero after several solvent diameters. From egs. (2},
5), (9) and (15) follows the effective interionic interaction in an infinitely dilute solution

wap(r) = —kpTln (1 + h?bs(r)) + wf;,f‘(r)(l + (e(n,) - I)Gab(r, 715)) (16)
_

The MSA calculation of was(r) according to eq. (16) is shown in Fig. 8a for the packing fraction of the solvent of
nus = 0.4 and the reduced dipole moment u* = 2, leading to ¢(n,)M3A = 73.04. The strength of the ion-ion interaction
is given by the modified Bjerrum parameter by = be(n,) = 33.33. The MSA results may be used as the starting point
for the calculation of higher approximations to the correlation functions in the hard sphere ion~dipole mixture with
the help of generalized virial expansions (refs. 7,8).

Another possibility is the use of the MSA results of the correlation functions of dipolar hard spheres as the input of a
perturbation theory for the calculation of the effective interaction of two Lennard-Jones ions in a Stockmayer—fluid.
For this model system the packing fraction 7;, the reduced dipole moment n* and the Bjerrum parameter b are
defined just as in the case of hard spheres, replacing R by o. Fig. 6b shows the corresponding mean force potential
calculated with the parameters 7y = 0.4, u* = 2 and by = 33.33. Other calculations of ionic mean force potentials
were carried out with more refined solvent models (refs. 15-17) and with more elaborate numerical integral equation
techniques (ref. 8). The common feature of all these calculations is that increasing electrostatic forces between the ions
and the molecules change the character of the ionic solvation interactions. The oscillations in the region of penetration
of the first solvation shells become ‘antiphasic’; an additional repulsion between positive and negative ions at distances
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Fig. 6. Mean force potential of two ions in a dipolar fluid at infinite dilution. a: charged hard
spheres in a dipolar hard sphere solvent; b: Lennard-Jones ions in a Stockmayer solvent: (1) (+-),
(3) (+4), (2) and (4) Coulomb interaction.

1 < z < 2 corresponds to an additional attraction between two positive (or negative) ions. The magnitude of these
effects strongly depends on the relations between the radii of ions and molecules, on the charges and dipole moments,
and on solvent temperature and density (refs. 7,11,13). This in turn leads to a peculiar thermodynamic behaviour of
the electrolytes including various forms of phase transitions (refs. 3,6).

CONCLUSIONS

Dense solvents with strongly repulsive core interactions and relatively weak electrostatic contributions to the mean
force potentials produce at low ion concentrations a remarkable increase of ion pairing compared with continuous
solvents of equal permittivity (MM-level description without specific solvation interaction between the ions). This
may be understood as a tendency to ‘Coulombic unmixing’, i.e., phase separation of the ion distributions to yield ion
pairs and other clusters in solution. The effect increases with increasing ion charges and decreasing solvent permittivity.
An example is the solution of BugNI in benzene, where ion pairing and unmixing are observed (ref. 18).

When short-range and electrostatic forces contribute to the mean force potentials, such constellations also are found
for the ion-ion pmf in infinitely dilute solutions, leading to the phenomenon of ‘hydrophobic unmixing’ (ref. 3). Phase
separations in electrolyte solutions were reported in re%. 14 for several aqueous tetraalkylammonium halide solutions,
among them also solutions of BugNI. The potential model proposed in ref. 3 for ion-ion interactions at MM-level
explains this type of phase separation by special solvation contributions to the ionic interaction potentials. The form
of the solvation potentials connected with ‘hydrophobic unmixing’ permit the simultaneous occurrence of (+—) and
of (++) ion pairs (so—called Kauzmann pairs) in the solution. The comparison of the behaviour of BugNI in water
and benzene shows that the solvent is responsible for the different types of phase transitions. Our calculations show
that the account of the solvent and solute properties at the molecular scale may explain the diversity of effective ionic
interactions in solutions and stimulate the use of Gurney potentials calculated at BO-level for an improved estimation
of thermodynamic properties of electrolyte solutions.
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