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Abstract- Solvation forces in electrolyte solutions may advantageously be  treated with sta- 
tistical mechanical methods from a unique point of view on the Born-Oppenheimer (BO) level. 
Integral equation techniques of the RNNC type are used and the potentials of mean force and 
the correlation functions yielding the excess functions are estimated for typical model solvents 
such as nonpolar and polar hard spheres or Lennard-Jones particles etc. The solvation contri- 
butions (Gurney potentials) to the effective interactions are presented and their effects in real 
solutions are discussed. 

INTRODUCTION 

Information on ion solvation commonly is accessible from the excess functions of thermodynamic or transport propertics 
such as osmotic and activity coefficients, heats of dilution or electrolyte conductivit obtained as the functionals of 
solvent averaged mean force potentials. This treatment a t  the McMillan-Mayer (MMY level represents ions as moving 
particles interacting by average forces in a structureless solvent characterized by its viscosity and relative permittivity. 
At MM-level solvation effects can only be indirectly reflected by the parameters of the ionic mean force potentials 
which commonly are subdivided into the contributions from the long-range Coulomb interactions and the short-range 
repulsive and attractive interactions. The form antl relative magnitude of these contributions strongly alTect the ion 
distributions and the structural and thcrtnodynamic excess quantities. Ion association (ref. I),  ‘coulombic unmixing’ 
(ref. 2) and ‘hydrophobic unmixing’ (ref. 3) are interpreted i n  the framework of such interionic theorics in tcrtns of 
effective interactions a t  infinite dilution. 
I t  is advantageous for the understanding of the short-range effects usually described by ‘overlapping of Gurney co- 
spheres’ to investigate the leadin potential terms at the BO-level where both the solvent molecules and the ions are 
structured interacting particles of the electrolyte solution; for the volume and surface properties see (refs. 4-8). 
The model calculations as well as the experiments (ref. 9) a t  BO-level reflect a variety of features affecting the niolcc- 
ular pair distribution functions. The  results from BO calculations and those of the solvent averaging description a t  thc 
McMillan-Mayer level may be  compared with the help of integral equation techniques based on the Ornstein-Zernike 
equation and a Reference Hypernetted Chain (RIINC) closure relation. The underlying theory and the numerical pro- 
cedures are given in (refs. 7,lO-12). In the present study the defining equations for the mean force potentials a t  BO- 
and MM-level are discussed. I t  is shown how the Gurney term of the ion-ion interactions reproduces the properties 
of the solvent structure a t  the MM-levcl antl how tlie solvent structure influences the Coulomb interaction via tlie 
solvent permittivity c. In a first ste I thc contribution of solvent averaged short-range non electrostatic interactions 
(we call them reference system (nS\ interactions) to the solvation forces is studied with the help of hard and soft 
spheres and Lennard-Jones particles. In a second step we introduce electrost,atic interactions between the ions and 
the solvent molecules considered as polar hard spheres and Stockmayer particles. 

EFFECTIVE IONIC INTERACTION IN A MOLECULAR SOLVENT 

The effective interaction between two ions a and b a t  position 1 and 2 in a solution is given by the mean force 
potential (pmf) Wab(12) related to the ion-ion radial distribution function g4b(12) = 1 4 -  h4b(12) in the mixturc by the 
relationship 

wab(12) = - ~ B T  l n ( l +  h,b(12)) ; a,6 = +, - (1) 

where hab(12) is the so-called total correlation function. The pmf Wab can be split into three parts 

In eq. (2) 7$(12) is the contribution of direct short-range interactions between ions a and b containing isotropic 
or anisotropic repulsive and attractive contributions, e.g. interaction potentials of the hard sphere, Lennard-Jones, 
dumbbell, tetrahedron etc. types. In dilute ionic systems the long-range contribution to the pmf, wbf, is a Debye- 
type interaction, i.e. a Coulomb interaction between the ions, screened by the permittivity c ( n 8 ,  n,) of the solution 
and by a Debye shielding exponent KD 
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In eqs. 3a and b l e ~  is the Boltzmann constant and T is the Kelvin temperature; z,,, Zb are the valences of the 
ions a and b, e is the elementary charge; n, and ni are the number densities of the solvent molecules and the ions, 
respectively; €0 and c(n,, ni) are the permittivity of vacuum and the relative permittivity of the solution a t  the particle 
densities n, and ni; r is the interionic distance, In the case of infinitely dilute solutions (ni -+ 0, K D  0) U J : ~  is the 
Coulomb interaction w2FuL(r) with ((n,) as the relative permittivity of the pure solvent 

The relative ermittivity c(n,, nj) must be calculated with the help of the statistical mechanical theory of the model 
solvent or sokt ion,  including the electrostatic interactions between solvent molecules and between ions and solvent 
molecules, or else be treated as an experimental input parameter. 
The solvation interaction contribution wtpLv in eq. (2) can be subdivided into two parts, one resulting from the short- 
range interactions of all constituents of the system, the reference interaction wipLv'Rs( 12), the other one stemming 
from the long-range electrostatic interactions between all species, w ~ ~ ~ ~ ~ ~ ~ (  12) 

On the other hand the:main contribution a t  the MM-level to the radial distribution function gSM(12) of a dilute 
system of ions in a structureless solvent is given by 

g , ~ b ~ ( 1 2 )  = exp(-~(uff(12)  + w,~ ,~ (12) ) )  ; P = I / ~ B T  (6) 

with c(n,, ni) as a given input parameter, The comparison of eqs. (1) and (6) shows that in the case of infinite dilution 

showing that  the solvation interactions calculated a t  BO-level in the case of infinitely dilute solutions are equivalent 
to the ad  hoc introduced Gurney cosphere interactions a t  MM-level. These cosphere interactions are often estimated 
by fit procedures from a comparison with thermodynamic and transport excess functions of electrolyte solutions (ref. 
11). 

SOLVENT MODELS WITHOUT ELECTROSTATIC INTERACTIONS 

Our first model calculations concern the influence of the contribution u~~~~~~~~ to the solvation of a diluted gas of 
charged particles in a molecular model solvent. 
This can be  studied by the comparison of the ion-ion radial distribution functions in a homogeneous structurelcss 
solvent of permittivity -z (MM-level) with the distribution of an equal number of ions in the mixture with solvent 
molecules (DO-level). The solvent molecules exert no electrostatic interactions on the ions. Ilowever, for the sake of 
formal consistency with the MM-calculations we introduce the factor I/c(n,) of the Coulonib ion-ion interactions also 
for the BO-calculations. 
The calculations of ion-ion radial distribution functions a t  BO- and MM-level are established with the help of a 
reference-HNC-technique based on a method of generalized virial expansions (ref. 12). 
The simple assumption of equal reference interactions for ions and solvent molecules yields U J ~ ~ ~ ~ ' ~ ~  as the dilTerence 
of the mean force potential of the system composed only of reference interactions and direct sqiort-range intkractions 
u 3 1 2 )  

Fig. la shows the contribution U J ~ ~ ~ ~ ~ ~ ~  for reference systems where uff(12) is a Lennard-Jones potential uLJ(r) for 
all particles 

uLJ(r) = 4cLJ ((u/r)" - (u/rj6) (10)  

a t  reduced distance r/a, reduced interaction strength O f r t J  = - z L J / k B T  = 0.5, and three reduced particle densities 71' = 
Nu3/V  = 0.5, 0.7, 1.0; N is the number of molecules, and V is the volume of the system; u is the distance paramcter 
of the Lennard-Jones potential, where i t  has zero value. The position of the potential minimum uk:n(rm,n) = --z is 
given by r,in = 2lI6u. 
Fig, la  shows that  the potential contribution ~ ~ ~ ~ ~ ~ ' ~ ~ ( 1 2 )  is negative for small r and of damped oscillating form, 
and yields an additional attraction between the ions if their center-to-center distance r is less than 1.20. This effect 
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is independent of the attractive part of the Lennard-Jones interaction. It stems from a probability force due to the 
'granularity' of the solvent yielding the repulsive short-range interactions between all particles in the solution; equal 
contributions to the ion-ion interactions also are produced in the hard and soft sphere model solvents. This is sliown 
in Fig. l b ,  where the solvation potentials ~ f p ~ ~ ~ ~ ( 1 2 )  of Lennard-Jones type are compared with those derived from 
a soft sphere reference system described by a n-12-potential of the form 
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Fig. 1. a: Lennard-Jones sys- 
tems ((l), (2), (3) n' = 0.5, 0.7, 1.0); k : a comparison of (1) Lennard-Jones and (2)  soft sphere 
systems (see the text). 

Solvation contribution wsoLv,RS k B T  to the mean force potential. 

In eq. (11) ~ ~ - 1 2  is the potential strength and u is a distance parameter. With 71' = N u 3 / V  and <:-12 = ~ , - 1 2 / k ~ T ,  

wfpLVtRS(12) is given in Fig. Ib  for a reduced density )a* = 0.7 and for ~ i - ~ ~  = c t J  = 0.5. 

In the next figures it is shown, how these contributions change the ion-ion distributions of a dilute 
ion gas imbedded in a nonpolar molecular model solvent. Figs. 2a and 2b sliow the ion-ion radial distribution 
functions (rdf) of charged hard spheres in a continuous solvent (MM-level) for an aqueous 2-2 model electrolyte 
solution of moderate concentration. The coupling strength for the Coulomb interactions is given by the Bjerrum 
parameter b = I B / R  = 6.8166 ( 1 ~  = ( ~ e ) ~ / ( 4 7 r t ~ k , T )  is the Bjerrum length). The system has a reduced ion density 
n: = (N+ + N - ) R 3 / V  = 0.06; N+ and N- are the numbers of positive and negative ions, R is the hard sphere 
diameter, and V 1s the volume of the solution. 
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Fig. 2. 
continuous solvent ((1) MM-level) and in a liard sphere solvent ((2) BO-level). 

Radial ion-ion distribution functions a:  (+-) and b: (++) of charged hard spheres in a 

These curves may be compared with the results of a calculation where the ions are imbedded in a hard sphere solvent 
of equal permittivity c (n , )  in such a way, that  the total reduced number density is 71* = n; + 7 1 ;  = 0.7534 (rdf on 
BO-level). The reduced number density of the solvent is 71: = N ,  R 3 / V ,  and N ,  is the number of solvent molecules. 
Adding the contribution w ~ ~ L v ' R s  to the mean force potential between the ions already leads to a pronounced increase 
of contact probabilities of pairs (+-) and contact of pairs (++), and oscillations around the long-range continuum 
contribution wkp with a remarkable peak at r / R  x 2 in the rdf (++) due to the second minimum in wab SOLV,RS 
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Fig. 3. Radial ion-ion distribution functions a: (+-) and b: (++) of charged soft spheres in 
a continuous solvent (( l) ,  (2) b = 2,  4; MM-level) and in a soft sphere solvent ( (3) ,  (4) b = 2, 4;  
BO-level). 

When the ions and solvent molecules undergo soft sphere reference interactions a similar behaviour of the ion-ion 
rdf is observed at the BO-level shown in Figs. 3a and b for a soft sphere model with short-range interactions given 
by eq. (11) where c i - 1 2  = 0.5. The comparison is made of the radial distribution functions of ions in a continuum 
(MM-level) and in a molecular solvent with a reduced number density n: = 0.69 (BO-level ; b again is the Bjerrum 

of b = 2 and b = 4. The reduced number density is nT = Nia3/V = 0.01 in both cases. 
parameter, b = l ~ / a .  Two ionic subsystems with different Coulomb interactions are presente d , characterized by values 
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Fig. 4. Radial ion-ion distribution functions a: (+-) and b: I++) of charged Lennard-Jones 
particles in a continuous solvent ((l),  (2) b = 2, 4; MM-level) and in a Lennard-Jones solvent ((3), 
(4) b = 2, 4; BO-level). 

The reference system interactions of more realistic models of the solution contain contributions from attractive disper- 
sion forces, such as modelled by a Lennard-Jones potential (eq. (10)). The corresponding radial ion-ion distribution 
functions are shown in Figs. 4a and 4b, where the ion-ion rdf of mixtures of Lennard-Jones (LJ)- and Lennard- 
Jones-Coulomb (LJC)-particles are shown under equal conditions as for molecules and ions with only soft repulsive 
core interactions. The  Bjerrum parameter for the LJC-interactions (the sum of the contributions w,sOuL (eq. (4)) 
and uLJ (eq. (10))) uses u as the distance parameter defined by eq. (10). According to eq. (7) the differences between 
both kinds of rdf are caused by the solvation interaction term given by eq. (9) shown in Figs. 1. A comparison of 
Figs. 4a and 4b with Figs. 2 and 3 further shows that the repulsive part of the reference interactions determines the 
shape and strength of the contribution wzpLv'Rs of the solvation potential. 
Fig. 5 shows the pmf in the case of a very dilute solution of an aqueous 1-1 model electrolyte (6  = 2 ant1 71; = 0.001). 
Structural oscillations of the solvation potential clue to the reference system contribution occur 'in phase' for the (++) 
and (t-) potentials. Additional attraction between ions of unlike and equal charge appears a t  distances r < 1.20. 
A secondary potential maximum occurs in both cases for r > 1.50. These effects increase a t  increasing ion size and 
decreasing charge density and a t  high solvent densities. 

' 
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INFLUENCE OF THE ELECTROSTATIC 

Fig. 5. Effective ionic interaction of a dilute 
solution of charged Lennard-Jones particles in 
a Lennard-Jones solvent: (1) (++); (2) (+-). 

CONTIUBUTION 

Solvent molecules exert electrostatic forces on the ions leading to the static permittivity c (n , ,n i )  > 1 and to the term 
w:PLV8EL of the solvation potential. 
In the framework of a statistical mechanical theory a t  BO-level the permittivity of the solvent c(n,)  must be calculated 
from the properties of the solvent molecules. This is not a trivial problem. The angle-dependent interactions between 
the solvent molecules lead to two-particle distribution functions it1 terms of rotational invariants from which the static 
permittivity c(n,) is accessible, usually with the help of MC- or MD-calculations or numerical solution of nonlinear 
integral equations for the correlation functions (see e.g. ref. 8 and the references quoted there). For a model solution 
of charged hard spheres ions) imbedded in a solvent of hard spheres with central point dipoles the pair correlation 

(MSA) (refs. 4-6 and references quoted there). The MSA is based on a system of integral equations linearized with 
respect to the long-range interactions; it does not account for the complete effect of ion pairing and does not yield the 
correct value of the permittivity of a highly polar solvent. However, an important feature of the MSA is its simplicity. 
As an example, the internal excess energy EeX and the permittivity c ( n , )  of a dipolar hard sphere solvent are given 
by the relationships (ref. 19). 

functions and consequent $ y also its thermodynamic properties may be calculated via mean spherical approximation 

and 

In these equations the parameter ~ 1 ~ s  is the packing fraction, related to the reduced number density n: = N,@/V of 
the solvent: VHS = m a : / G .  R is the diameter of the dipolar hard spheres. The parameter VD depends on the dipolar 
coupling parameter y which in turn is connected with the dipolar moment p of the solvent molecules 

3y = Q (VD) - (I (-7]D/2) ; y = 4*fI:(/i')2/9 ; (14') '  = /l2/(R3ki?T) (14a,b,c) 

The mean force potential between two charged liard spheres in an infinitely diliite solulion of dipolar hart1 spheres is 
also calculable. The electrostatic contribution to the solvation potential derived from this calculation has the general 
form (refs. 5-7) 

At infinite dilution w:: is given by the Coulomb potential (eq. (4)) and c ( n , )  is the permittivity of the solvent, eq. 
13). The function G a b  is of damped oscillating form, tending to zero after several solvent diameters. From eqs. (2), 

and (15) follows the effective interionic interaction in an infinitely dilute solution 

The MSA calculation of wot,(r) according to eq. (16) is shown in Fig. 8a for the packing fraction of the solvent of 
QHS = 0.4 and the reduced dipole moment p* = 2, leading to c(n,)MSA = 73.04. The strength of the ion-ion interaction 
is given by the modified Bjerrum parameter 60 = 6c(n , )  = 33.33. The MSA results may be used as the starting point 
for the calculation of higher approximations to the correlation functions in the hard sphere ion-dipole mixture with 
the help of generalized virial expansions (refs. 7,8). 
Another possibility is the use of the MSA results of the correlation functions of dipolar hard spheres as the input of a 
perturbation theory for the calculation of the effective interaction of two Lennard-Jones ions in a Stockmayer-fluid. 
For this model system the packing fraction ~ I L J ~  the reduced dipole moment 11' and the Bjerrum parameter b are 
defined just as in the case of hard spheres, replacing R by u. Fig. Bb shows the corresponding mean force potential 
calculated with the parameters 7)LJ = 0.4, 11' = 2 and 60 = 33.33. Other calculations of ionic mean force potentials 
were carried out with more refined solvent models (refs. 15-17) and with more elaborate numerical integral equation 
techniques (ref. 8).  The common feature of all these calculations is that increasing electrostatic forces between the ions 
and the molecules change the character of the ionic solvation interactions. The oscillations in the region of penetration 
of the first solvation shells become 'antiphasic'; an additional repulsion between positive and negative ions a t  distances 
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Fig. 6. Mean force potential of two ions in a dipolar fluid a t  infinite dilution. a: charged hard 
spheres in a dipolar hard sphere solvent; b: Lennard-Jones ions in a Stockmayer solvent: (1) (+-), 
(3) (++), (2) and (4) Coulomb interaction. 

1 < z < 2 corresponds to an additional attraction between two positive (or negative) ions. The magnitude of these 
effects strongly depends on the relations between the radii of ions and molecules, on the charges and dipole moments, 
arid on solvent temperature and density (refs. 7,11,13). This in turn leads to a peculiar thermodynamic behaviour of 
the electrolytes including various forms of phase traiisitions (refs. 3,G). 

CONCLUSIONS 

Dense solvents with strongly repulsive core interactions and relatively weak electrostatic contributions to the mean 
force potentials produce a t  low ion concentrations a remarkable increase of ion pairing compared with continuous 
solvents of equal permittivity (MM-level description without specific solvation interaction between the ions). This 
may be understood as a tendency to ‘Coiilombic unmixing’, i.e., phase separation of tlie ion distributions to yield ion 
pairs and other clusters in solution. The effect increases with increasing ion charges and decreasing solvent permittivity. 
An example is the solution of Bu4NI in benzene, where ion pairing and unmixing are observed (ref. 18). 
Whcn short-range and electrostatic forces contribute to the mean force potentials, such constellations also are found 
for the ion-ion pmf in infinitely dilute solutions, leatlin to the phenomenon of ‘Iiydrophobic unmixing’ (ref. 3). Phase 
separations in electrolyte solutions were reported i n  ref. 14 for several aqueous tctraalkylammonium halide solutions, 
among them also solutions of Bii4NI. The potential model proposed in ref. 3 for ion-ion interactions a t  MM-level 
explains this type of phase separation by special solvation contributions to tlie ionic interaction potentials. The form 
of tlie solvation potentials coiinected with ‘hydrophobic unmixing’ permit tlie siiniiltaneous occurrence of (+-) antl 
of (++) ion pairs (so-called Kauzrnann pairs) in the solution. The comparison of the behaviour of Bu4NI in water 
and benzene shows that  the solvent is responsible for the different types of phase transitions. Our calculations show 
that the account of tlie solvent and solute properties a t  the molecular scale may explain the diversity of efkctive ionic 
interactions in solutions and stimiilate the use of Gurney potentials calculated a t  UO-level for an improved estimation 
of thermodynamic properties of electrolyte solutions. 
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