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Abstract: The behavior of polymer molecules oriented by mechanical, 
electrical, and magnetic fields is discussed. The consequences of such 
orientation on optical properties such as birefringence, dichroism, and 
scattering is analyzed, and means for studying these are illustrated. 
Particular cases which are described are (a) the change in birefringence 
dichroism, and light scattering when a crystalline polymer is subject to strain, 
(b) the change in small-angle neutron scattering when a polymer melt or 
crosslinked rubber is deformed, (c) the change in birefringence and light 
scattering accompanying the stress-induced crystallization of a polymer, and 
(d) the change in light scattering accompanying the shearing of a 
thermotropic liquid crystal polymer. 

Introduction 
Polymer molecules are normally anisotropic in their mechanical, electrical, magnetic, and optical 
properties. As a consequence of their chain structure, their moduli and their electrical and 
magnetic susceptibilities are tensor quantities leading to anisotropic behavior when the polymer 
is oriented. Orientation may be brought about through application of an external field which may 
be rheological, electrical or magnetic. A result will be the development of anisotropic refractive 
index (birefringence), absorption of radiation (dichroism), fluorescence polarization, scattering 
and/or diffraction which departs from circular symmetry about the sample normal. Since polymer 
molecules exhibit longer relaxation times than do small molecules, this optical response will be 
time dependent, and its study serves to characterize the dynamics of the system. 

The specification of orientation requires the identification of a particular axis of the molecule 
which is indicated by a unit vector, i. This may represent the orientation of the molecule as a 
whole or that of a particular part of it. For a randomly oriented polymer, all orientations of e are 
equally probable, whereas particular orientations are favored in an oriented system. The 
distribution of orientations may be specified by a function P(8,$) where 8 and $ are the Eulerian 
angles of 3. While it generally depends on both 8 and $, for uniaxial orientation, it depends only 
upon 8. Usually, this complete distribution function need not be known, but rather the coefficients 
of a spherical harmonic expansion suffice (1). 

Here, the symbol c > designates an average value. For symmetrical distributions, only the even- 
numbered harmonics appear. While the series is infinite, the P2 and P4 terms are usually 
sufficient for most purposes (2). For example, the aggregate theory of mechanical properties is 
formulated in terms of these two Pis. The term, Pp, has been called the "Hermans orientation 
function" (3) and sometimes designated by f. 

P(e,$) = p0 + ~2 [ (3 <cOS28 >- 1)/2) + p4 [ (5 CC~S%> - i)/4] + . . . (1 1 
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For crystalline polymers, unit vectors, a, b, and may be defined along the three crystal axes, and 
values of Pi may be specified for each. For orthorhombic crystals where the axes are 
perpendicular, it follow that 

so only two of the three (P2)i's are independent (4). Geometric representations of the (Pp)(s have 
been proposed (5, 6). 

The polarizability tensor I&I describes the relationship between the induced dipole moment, m, 
and the applied electric field, E. 

(P2)a + (P2)b + (p2)c = 0 (2) 

. .  v Refratve Ir&x and R t r e f r t n w  

ii 4 4 ~  (3) 
For an isotropic material, a is a scalar so 6 and E are collinear. In the linear optics 

approximation, ?Fi varies linearly with E, but for non-linear optical (NLO) materials, higher powers 
of E are of concern. The dielectric constant, E, describes the relationship between the electrical 
displacement (flux density), n and E. 

These are related to the polarization, P, by 

where P = N m = N a Eint. In the isotropic case, P, E, m, and a are the magnitudes of P, E, m, and 
la(, N is the number of molecules/cm~ and Eint is the internal or local field acting on the molecule. 
Using the Lorenz approximation of a spherical cavity, this is 

By using these relationships and the Maxwell result E = n2, where n is the refractive index, one 
obtains the Lorenz-Lorentz equation 

By differentiating, one obtains, for small refractive index difference, the result that the refractive 
index difference, the birefringence, An, is related to the polarizability difference, AP, by (7, 8) 

The "valance bond approximation" assumes that the principal polarizability of a molecule (or 
other aggregate) may be expressed in terms of the principal polarizabilities of its bonds (or other 
structural units), (b1)i and (b2)i by 

where B i i  is the angle between the principal axis of the ith bond and that of the molecule. This 
leads to the result for the polarizability difference, 

so that the birefringence is 

The relationship between (P2)i and the deformation or other field applied to the system depends 
upon a structural model. For example, the Kuhn-Grun-Treloar model of an ideal rubber 
consisting of Ns identical statistical (Kuhn) segments, each of anisotropy (bl - b ~ ) ~ ,  gives for the 
segment orientation function, ( P Z ) ~  

where Nu is the number of segments per chain (between crosslinks) and h = Ub is the (uniaxial) 
extension ratio (where L and b are the stretched and unstretched lengths of the sample). This 
gives for the birefringence of a stretched rubber, 

where Nc = NJNu is the number of chaindcrns. One might compare this with the kinetic theory of 

n =  lgIE (4) 

D = E + 4xP (5) 

Eint = [ (E + 2) / 3 ] E 

[ (n2 - 1 ) / (n2 + 2) ] = (4 /3) x P 

An = [(2/9) x (n2 + 2)2/ n ] AP 

(6) 

(7) 

(8) 

PA = X [ (bi - b2)i cOs2eii + (b2)1] 

AP = Pa - PB = X (bi - b2)i [ (3 ccos%Ii> - 1 ) / 21 = X (bi - b2)i (P2)i 

An = [ (2 / 9) zc (n2 + 2)2 / n 1 X (bi - b2)i (P2)i 

(9) 

(10) 

(11) 

(P2)S = 11 1 (5Nu) 1 [ h2 - (1 / A) I (1 2) 

An = [(2 / 45) zc (n2 + 2)2 / n ] NC (bl - b2)s [ h2 - (1 / h) ] (1 3) 
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rubber elasticity result for the stress, Q (based on actual cross-sectional area), 

where k is Boltzmann's constant. The stress-optical coefficient is then 

The prediction is that CSOC is independent of Nc (degree of crosslinking), and extension ratio, h, 
and is inversely proportional to the absolute temperature, T. These predictions are 
approxomately in agreement with experiment. The fact that CSOC is independent of Nc suggests 
that it may even have the same value when Nc= 0, as in an uncrosslinked polymer. This is 
experimentally found to be so and is predicted by current theories of polymer relaxation such as 
reptation theory. CSOC is a property of the orienting molecule and is independent of the network 
topology. Indeed, the same value is obtained in a streaming birefringence experiment where the 
orientation is obtained by hydrodynamically orienting a molecule in solution. 

For a multicomponent or multiphase system, one may write (9) 

where $i is the volume fraction of component or phase, (P2)i is its orientation function, and (Ano)i 
is its intrinsic birefringence (its birefringence when it is perfectly oriented). Anform is the "form 
birefringence" resulting from the distortion of the electrical field by the phase boundary in a 
multiphase system. The orientations of the various components or phases, (P2)i, are not 
necessarily the same but depend on the molecular nature and morphology of the system. Thus, 
the stress-optical coefficient for a binary miscible blend is (1 0) 

where the Ki'S are weighting factors describing the relative orientation of the two components. 
For chains of different stiffness, K is larger for the stiffer chain (as can be demonstrated using 
infrared dichroism as shown in the next section). An approximate theory shows that K is 
proportional to the square of the Kuhn segment length. 

Q = Nc kT [ h2- ( l /h) ]  

CSOC = An/o = [(2/45) IT (n2 + 2)2/n kT] (bi - b)Is 

(1 4) 

(1 5) 

An = (An)i = [ Cpi (P2)i (Ano)i ] + Anform (1 6) 

csoc = $1 K i  (CSOC 11 + $2 K2 (CSOC )2 (1 7) 

A similar equation holds for a phase-separated blend, except that the Anform, dependent upon 
the shape of the phase, must be added. In this case, the values of the K'S depend upon the 
morphology and connectivity of the phase separated regions. 

Crystalline polymer obeys this result where (1 1) 

where $cr is the volume fraction crystallinity. This equation may be used to obtain (P2)am providing 
an independent means is available for obtaining (P2)cr. This can be done using x-ray diffraction 
or infrared dichroism. Anform may be estimated by swelling,the polymer with solvents of differing 
refractive index, assuming that the solvent enters only the amorphous phase and the orientation 
is unaffected by swelling (12). When the refractive index of the swollen amorphous phase 
matches that of the crystal, Anform = 0. Such studies indicate that the amorphous contribution to 
birefringence is less and increases more slowly with elongation than does the crystalline 
contribution. 

An = $cr (Pdcr(Ano)cr + (1 - $cr) (Pdam(Ano)arn + Anform (1 8) 

An observation is that for stress-induced crystallization (SIC) of polymers, the crystals are usually 
highly oriented. If one assumes that (P2)cr= 1 in such cases, that the SOC for the amorphous 
phase is that of the completely amorphous polymer, and Anform is neglected, one obtains 

where K = 
An = $cr (Ano)cr + (1 - $cr) K CSOC Q (1 9) 

is the fraction of the stress borne by the amorphous phase (often assumed to be 
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unity or approximated using composite theory). This gives 

providing a means for the measurement of $cr from observations of changes in An and Q during 
crystallization. This can be done rapidly, and has been reported for the SIC of rubbers and of 
polyethylene teraphthalate (1 3). 

The dynamic strain-optical coefficient, K 1 is defined as K* = [ a(An)/ae] during oscillatory strain, 
E. This is a complex quantity which may be resolved into real and imaginary parts (14), 

K* = K'+ i K 
where 6 =  tan-1 (K"/K) is phase angle between An and E. For a crystalline polymer (15), 

K* = h r  (Ano)cr [ ~ 2 ) c r /  &I + (1 - k r )  (Anolam [ ~ 2 ) a m /  ~ E I  + a(An)form/h 
Since [a(Pn)cr/ ae] may be measured by dynamic x-ray diffraction or dynamic infrared dichroism, 
the measurement of K* serves to characterize [a(P~)am/&] which provides information about the 
dynamics of the amorphous phase in crystalline polymers. 

This is a particular example of the general dynamic rheo-optical approach and can be applied to 
the other rheo-optical techniques to be described later. The same formalism can be applied to 
these as is used for linear viscoelasticity, where a strain-optical spectra function, B(ln z) (where z 
is a relaxation time) may be defined, from which, for example, K'(ln w) (where w = 2nv is the 
frequency of the experiment) to give (16) 

$cr= [ An - K Csoc 0 1 / [ (Ano)cr- K C S O C ~ ]  (20) 

* 

(21 1 

(22) 

K(ln w) = jB(ln z) [ 

E(ln w) = 1 H(ln z) [ 0222 / (1 + 0222) ] d In z 

/ (1 + 0222) ] d In z (23) 

This is analogous to the procedure for determination of the in-phase dynamic modulus E'(ln 0)  

from the viscoelasticity relaxation function H(ln z) (17), 

For an ideal rubber above its Tg, B(ln z) and H(ln z) are proportional, but they are generally not 
and a comparison indicates how stress relaxation processes relate to orientational relaxation 
processes. 

The birefringence changes become complicated as the glass transition temperature is 
approached where a "distortional birefringence" contribution occurs which is associated with 
bond bending and changes in intermolecular distances in the glassy state. Such contributions 
are not well understood (18). 

Orientation can be brought about by electrical and magnetic fields as well as by mechanical and 
hydrodynamic. Birefringence arising from electrical field orientation is called the Kerr Effect, and 
its value is proportional to E2, with the proportionality constant being the Kerr Constant. It may 
arise from orienting forces on a molecule arising from both permanent and induced dipole 
moments (19). Thus, the effect depends upon both the permanent dipole moment and the 
anisotropy of the polarizability of a molecule. A practical application of the Kerr Effect is for 
modulating light, where a Kerr cell contains an oriented liquid and is placed between crossed 
polars. When an electrical field is applied at an angle of 450 to the polar directions, the resulting 
birefringence change modulates the light transmission, T, since T = sin2 (ndAn/h), where d is the 
thickness of the cell. 

(24) 

For biaxially oriented samples, the refractive indices along the three principal axes of the sample, 
n l ,  np , and n3 differ, so three birefringences may be defined: An1 = n2 - n3, An2 = n3 - nl,  and 
An3 = n1 - nq. Only two of these are independent. For uniaxial orientation, n2 = n3 and An1 = 0. 
For light propagating in the normal, the 3, direction, only An3 is measured. To obtain An1 or Anp, 
either measurements of retardation must be made as a function of the tilt angle, $, of the sample 
(20), or else conoscopy may be used in which the sample is observed between crossed polars 
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using convergently polarized light. Since the retardation of light rays passing through the sample 
at different angle will be different, an interference figure results which is characteristic of both An1 
andAn3 (21). 

Conoscopy may be used for the examination of monodomain liquid crystals which may exhibit 
homeotropic or planar orientation, leading to characteristic interference patterns. When such 
samples are sheared, the molecules, and hence their optic axes, tilt, leading to a distortion of the 
interference pattern permitting establishment of the tilt angle (22). 

Liquid crystals are generally stiff molecules having high anisotropic polarizabilities, and thus, 
high Kerr constants. A practical application of these is for polymer dispersed liquid crystals 
(PDLC) where low molecular weight liquid crystals are contained within micrometer size cavities 
in a solid polymer. These generally scatter light because of the difference in refractive indices 
between the liquid crystal and the polymer matrix. However, with application of an electric field, 
the liquid crystals become oriented, and, with proper choice, match the refractive index of the 
matrix, and lead to a decrease in scattering. This can be used for control of light transmission 
and for displays (23). 

In recent studies, PDLCs were observed by conoscopy under magnetic field orientation. The 
change in interference patterns characterized the change in liquid crystals director orientation 
distribution within the nematic droplets as well as its time dependence. 

Jnfrared Dichroim 
The absorbance of polarized infrared radiation depends upon the orientation angle, 8 ~ ,  of the 
transition moment, R, with respect to the polarization direction (24), 

A = a C O S ~ ~ T  
For uniaxial orientation, this leads to the result that 

(R - 1) / (R+2) = [ (3 <COs2 eT> - 1)/2 ] = (P2)M (W 
where R = AII /Al  and where All and A l  are absorbencies for radiation polarized parallel to and 
perpendicular to the polymerization direction. Thus, a measurement of R serves to characterize 
the orientation function of the transition moment, (P2)M. It should be realized that (P2)M is not 
necessarily the orientation function of the molecule P2 and is related to it by 

where (P02)M is the orientation function of the transition moment axis with respect to the 
molecular axis and has a value requiring knowledge of the transition moment direction. 

A significant advantage of the infrared dichroism technique is that it provides a specific measure 
of P2 for the particular part of the structure having an infrared absorption band at the wavelength 
of measurement. Thus, for example, one can be looking at the orientation of a particular part of a 
molecule or of a particular component of a copolymer or blend (25). In cases where crystalline 
and amorphous absorption bands occur at different wavelengths, one can distinguish the 
orientation of these phases (26). The identification of components can be aided by the isotope 
labeling technique, since by substituting deuterium for hydrogen in a molecule, infrared bands 
are shifted to lower frequencies. Thus, selected components or parts of structures can be so 
labeled (27). 

Early examples of the infrared dichroism technique are its use for resolving the orientation 
functions for the crystalline and amorphous phases of polyethylene (26), polypropylene, and 
polyethylene teraphthalate (27). It has been used for both miscible and immiscible block 
copolymers and blends to resolve the orientational response of their components. 

The use of Fourier transform infrared spectroscopy (FTIR) permits the rapid acquisition of the 
entire spectra, so it is helpful for dynamic studies where the observation of changes in several 
bands are to be simultaneously made. However, for observations at a single wavelength, 
conventional spectrometers are still preferable. 

(P2)M = p2 (p02)M (27) 
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In earlier techniques, the measurement of dichroism required separate measurements of All and 
A l i n  order to take their ratio so as to obtain R. However, now one may employ piezoelectric 
modulation which can substantially increase the precision of measurement and which renders 
dynamic infrared dichroism a practical technique (29). 

A disadvantage of the infrared dichroism technique is that infrared absorption is strong for many 
polymers, so it is necessary to employ very thin samples, preventing its use for many samples of 
practical thicknesses. A way around this problem is to employ the attenuated total reflection 
(ATR) technique in which the attenuation of surface reflected infrared bands is observed (30). 
The geometry of such measurements is more complex, and they suffer from the fact that the 
orientation measured is that of a thin surface layer which may differ from that of the bulk sample. 

Another approach which provides complementary information is that of Raman spectroscopy as 
discussed in a later section. 

Polari7ed Rams n Soect roscoDy 
When light impinges on a sample, a portion is scattered, mostly at the frequency of the incident 
light (Rayleigh scattering) but with a small fraction shifted upward or downward in frequency 
because of the gain or loss of energy of the photons from interaction with quantized molecular 
energy levels. Thus, such shifts, referred to as "Raman spectra" (31), are measures of these 
energy levels and relate to the vibrational modes of the molecules. The selection rules for 
Raman spectra differ from those for infrared (IR) in that for an IR band to be active there must be a 
dipole moment change accompanying the vibration, whereas for Raman spectra, there must be a 
polarizability change. Thus, while a molecule like H-H is not active for infrared absorption, since 
there is no dipole moment change accompanying vibration, it is active in Raman scattering since 
its polarizability does change. It is instructive to consider the infrared and Raman activity of the 
various vibration modes of Con. The symmetrical stretching mode, 
c--O=C=O-->, is inactive in the IR since the dipole moment changes arising from the change in 
C=O bond lengths are equal and opposite, so they cancel. However, the polarizability changes 
are additive, so the mode is Raman active. On the other hand, for the asymmetric stretching, 

polarizability changes cancel, since that for one on the C=O bonds increases while the other 
decreases. Thus, this mode is inactive in the IR but active in the Raman. This illustrates the 
general principle that for molecules such as this having a center of symmetry, the activities in IR 
and Raman are complementary. Those modes active for one are inactive for the other. It is noted 
that the transition moment for this mode is parallel to the molecular axis, whereas 

that for the bending vibration lO=C=Od (active in the IR), is perpendicular to the molecular axis. 

Raman scattering involves two successive processes, (a) the absorption of radiation by the 
molecule dependent upon (R P ) 2 ,  and its emission, dependent upon (R' A)*, where and R 
are the transition moment vectors for absorption and emission, respectively, and P and are unit 
vectors along the polarization directions of the polarizer and the analyzer, respectively. Thus, the 
intensity of the Raman scattering is (32): 

Usually, the lifetime of the excited state is short compared with characteristic times for molecular 
motion, so that R = R . For the case where both the polarizer and analyzer are vertically 
oriented (along the unit vector k lying along the Z axis), the intensity [designated (IRaman)Vv] is 

where is the angle between R and the Z axis. For a distribution of orientations, COS4eM is 
replaced by its average value, CCOS4eM>. Thus, this measurement provides information about 
the fourth moment of the orientation related to the fourth-order spherical harmonic, P4 which 
cannot be obtained from infrared dichroism. 

O=C=O, the dipole moment changes for the two C=O bonds are additive, whereas the C- 
-> c-- 

1' 

harnan = KRarnan @ p)'@ ' f i l 2  (28) 

- -  
(1Rarnan)Vv = ba rnan  (M k)4 = KRarnan M4 ms4eM (29) 
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When the polarizer and analyzer are crossed, then for scattering at 90°, 
(R ' R) = (1/2 ) M sin 8M, so for this polarization, 

so for a distribution of orientations, 
(1Raman)Hv = (1/2 ) KRaman M4 COS2eM Sin2em = (1/2 ) KRaman M4 COS28M (1 - COS2eM) (30) 

Thus, from measurements with both Vv and Hv polarization, it is possible to obtain both P2 and 
P4. Such measurements have been extensively employed for the measurement of the orientation 
of polyethylene teraphthalate (33) where departure from the affine relationship between P2 and 
P4 was seen. With crystalline or phase separated systems, the high Rayleigh scattering can 
obscure and scramble the polarization of the Raman lines, rendering analysis difficult. However, 
orientation diminishes the Rayleigh scattering, and satisfactory measurements have been 
reported for oriented polyethylene samples (34). 

As with infrared spectroscopy, the employment of Raman Fourier transform techniques permits 
simultaneous studies of changes in several Raman bands. 

I .  nce P- 
Fluorescence polarization resembles Raman scattering in that it involves the successive 
absorption and emission of a photon of visible light with the energy exchange with the system. 
However, in this case, the exchange is with an electronic energy level. Light is usually absorbed 
in the ultraviolet and emitted in the visible. The geometry is similar, and it is possible to obtain 
both P2 and P4 from (Ifluor.)Vv and (Ifluor.)Hv measurements (35). Since most polymer molecules 
are not naturally fluorescent, it becomes necessary to either attach a fluorescent label to the 
molecule or else add a fluorescent dye. This presents the problem of uncertainty in the 
relationship between R label involved in the measurements and the orientation axis of the 
molecule. 

Another complication is that the lifetime for the excited state for fluorescence is longer than that 
for Raman scattering and often comparable with the time scale for molecular motion. Thus, the 
assumption of the identity of R and R ' is suspect since orientation may change in between 
absorption and emission. While this can present a complication in the interpretation of 
orientation information, it can be used to advantage in learning about molecular motion, and it 
has been used, for example, to study phase separation of blends (36). 

Fluorescence has an advantage in that it utilizes visible light and intensities are usually greater 
than those for Raman scattering. Thus, fluorescence polarization microscopy is a practical 
technique. 

Scattering techniques have the advantage that they depend upon the interference between 
coherent waves emitted from different parts of the system, so they depend upon its geometry as 
well as its orientation. In general, the scattered amplitude, E($, is given by (37) 

where s is the scattering vector defined by i'= (2dh)  61 - &,), where and &, are unit vectors 
along the scattering and incident rays, respectively. The vector, f, defines the location of the 
scattering element, and d3f is the volume element for a 3-dimensional integral over all 
orientations and magnitudes of this vector. The term, exp [i ( F )], represents the phase shift of 
the incident and scattered wave arising from the element at F. A(: ) represents the fraction of the 
incident intensity, Eo, scattered per unit volume. It depends upon the kind of radiation and the 

erina - Genera 

E($ = Ks Eo .f A(:) exp [i ( 9 * ? ) ]  d% (33) 
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properties of the system. If A(r ) is known as a function of ?, then E($ may be calculated, and the 
scattered intensity may be obtained from Is($ = KI [ Es($ ES*(i) 1. The inverse of obtaining A t  ) 
from Is(G ) can usually not be uniquely done. Since A(; ) defines the structure of the system, this 
means that a structure cannot be uniquely determined from scattering, and assumptions or other 
information must be introduced. 

A simplification occurs with spherically symmetrical systems where A(? ) is independent of the 
orientation of F but depends only upon its magnitude, r. In this case, one may integrate over the 
angular coordinates of F, leading to (38) 

Es(q) = 4n Ks b I A(r) [ sin (qr) / (qr) ] r2 dr (34) 
The amplitude, Es(q) then depends only upon q, the magnitude of 6, given by 9 
= (4nA) sin (8/2), where 8 is the "scattering angle" between and 3,. Thus, the scattering 
pattern is then circularly symmetrical about io. In the simple case of a uniform sphere in a 
vacuum with radius, Rs, and constant scattering power, As, this gives, 

where Vs is the volume of the sphere [ Vs = (4/3)nRs3], and @s(U) is the sphere scattering 
function defined as 

where U = q Rs. This may readily be generalized to a sphere with a radial variation in As(r). For 
a uniform sphere immersed in a medium with scattering power Ao, this leads for the intensity of 
scattering to 

This predicts that the scattered intensity varies with Vs2 or Rs6 so that large spheres scatter much 
more than small ones. The term, (As - Ao)2 , is called the "contrast" and represents the difference 
between the scattering of the sphere and that of its surroundings. It can be changed by adjusting 
the nature of the system or its surroundings as can be done in light scattering by changing the 
refractive index of the surroundings or in neutron scattering by deuterium substitution in one of 
the components. The scattering from a component may be eliminated by "contrast matching" 
where one adjusts its As or A. so as to make (A, - &) = 0. The function @,(U) is an angularly 
dependent term reflecting the size of the sphere, Rs. It oscillates in value representing various 
orders of interference and decreases more rapidly with increasing 8 for larger Rs. Thus, its 
observation serves to characterize the sphere size. One may sum the intensities from a random 
collection of spheres to describe the effects of a distribution of sizes. 

One may carry out similar calculations for other spherically symmetrical systems and may 
general show that (38) 

where Is(0) is the value of Is(q) at q = 0. Rg2 is the radius of gyration of a arbitrary spherically 
shaped object. Thus a plot of the interference function, P(8) = Is(q)/ls(0) vs q2 should lead at 
small q to a linear variation with slope -Rq2/3. This approach is conventionally used to determine 
the Rg of a polymer molecule in dilute solution. It is necessary that the wavelength and 8 range of 
the measurements be selected so that one can neglect terms of higher powers in q in the above 
equation. 

Es(q) = Eo Ks As vs @ S ( W  (35) 

@&) = (3/U3) (sin U - U cos U) (36) 

Is(q> = lo Ks2 vs2 (As - Ao)2 @S(U)* ( 37) 

Is(q) = Is(0) [ 1 - (R$/3) 42 + - , . ] (38) 

It is necessary that such measurements be made in dilute solution to avoid contribution from 
interparticle interference. However, as discussed later, concentrated solution or even bulk 
measurements of Rg are possible using neutron scattering by contrast matching the surroundings 
by deuterium substitution. 

Where the particulate nature of the scattering system cannot be identified, one may describe the 
scattering in statistical terms using the approach of Debye and Bueche (DB). This recognizes that 
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scattering is completely canceled from large homogeneous systems and the scattering from real 
system arises from fluctuations from homogeneity. They give (39) 

where V is the volume of the scattering system and q(F) is the fluctuation defined as 
q(?) = A(;) - <A(F) >. <q% is its mean-squared value, and Y(Fi j) is a correlation function defined 
by 

Is($ = Ks V q 2 >  J ~ ( i i  j) exp [ - i ( Fi j] dq i  j) 

Y (Fij) = <qfi) q(Fj)>i i j / q 2 >  

Is(q) = 4x Ks V q 2 >  y(r) [ sin (qr) / (qr) ] r2 dr 

(39) 

(40) 
The average in the numerator is obtained for all pairs of volume elements, i and j ,  separated by 
vector distance, Fi j = Fi - Fj. The spherically symmetrical version of the DB equation is 

for a two-phase system of volume fractions $1 and $2 and scattering powers A1 and A2 having 
sharp boundaries, <q% = $142 ( ~ 1  - A&'. The correlation function declines from unity when the 
separation of the volume elements, r = 0, toward zero for infinite separation for systems having no 
long range order in a manner characterizing the geometry of the system. It may be obtained by 
Fourier inversion of Is(q). For many systems, this has the functional form, y(r) = exp (-r/&) where 
ac is a correlation distance representing the size of the fluctuating region. It has been shown that 
this form is rigorous for a random two-phase system having sharp boundaries (40). This function 
leads to the result that 

The prediction is that for small ac, the scattered intensity increases with ac3, but at large a ~ ,  
decreases as (l/ac). It passes through a maximum when a c e  l / q  expressing the usual 
conclusion that systems scatter most when their sizes are of the order of the wavelength of the 
radiation. At large q, it predicts that the intensity decreases with l /q4in agreement with "Porod's 
Law",'a general result for systems having sharp boundaries. ac2 may be determined from the 
slope of a plot of ls(q)-1/2 vs 92, a "DB plot". 

The DB theory has been used for characterizing a variety of systems using differing radiation. 
These include (a) porous rock, (b) catalysts, (c) phase separated blends, and (d) swollen 
inhomogeneously crosslinked rubbers. It provides a basis for formulating the scattering from 
liquids and solutions. 

(41) 

= KDB q 2 >  e3 1 [ 1 + q2Q2 l2 (42) 

The scattering power, A(r), depends on the density and composition of a system. Fluctuations in 
density depend upon compressibility and go through a maximum at critical points, giving rise to 
critical opalescence. In solution, additional fluctuations arise from concentration fluctuations to a 
degree dependent upon the osmotic compressibility, leading to 

where c is the concentration and II the osmotic pressure. Upon using a virial expansion for n, 
this gives the "Zimm equation" (41), 

where H is a constant proportional to Ks, M2 is the molecular weight of the solute, and A2 is the 
second virial coefficient related to the Flory interaction parameter, x .  This equation, restricted to 
dilute solution has been extensively used for the measurement of molecular weight and 
interaction parameters for polymers in dilute solution. 

By using the Flory-Huggins theory, or its generalization using the "random phase approximation", 
one can obtain a more general equation valid at high concentrations of binary solutions as (42) 

where the $i'S and the Zi'S are the volume fractions and degrees of polymerization of the two 
components. While, in principle, this equation permits the determination of x from scattering from 
concentrated solution, it has not been used for light scattering because of the difficulty of cleaning 
such solutions, but, as will be discussed, it is used for neutron scattering. 

[1(q)lreduced = [I(q)solution - [1(q)]solvent c / (amac) (43) 

H c / Is(q) = 14 M2 P(e) ] + 2 A2 c (44) 

k"/ Is(q) = $1 1 [ZI Pi(q)l + $2 1 [z2P2(q)I - 2 x (45) 
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t sc- 
In the special case oflight scattering, Ks depends on polarizability, related to the refractive index. 
In addition to the conventional measurements on dilute solutions, studies have been extended to 
phase separated systems such as polymer blends. A special feature of light scattering is its 
dependence upon polarization of the light, arising because of the anisotropy of molecular 
polarizability. The scattering power is given by (43) 

where R(i) is the induced dipole moment at! given by 

0 is a unit vector in the direction of the analyzer polar, Sf) is the anisotropy of polarizability at ! 
(assumed uniaxial) given by ti(!) = a1 (!) - a2(!) for the principal polarizability directions and a(!) 
is a unit vector in the direction of the principal polarizability direction. This has been used to 
generalize the equation for the scattering from a sphere, taken as an idealized model for a 
polymer spherulite. It gives, for example, the prediction of scattering with crossed polarizers (H,) 

A(?) = [ R(i) ti ] 

R(i) = t i ( ! )  L*i(?)] a (i) +a& Eo 

(46) 

(47) 

(44) 
[ Is(~)]Hv = (1 /15) Ks ~ 6 %  Vs2 @3( U) sin2 p cos2p 

@3(U) = (3/U3) [ 4 sin U - U cos U - 3 Si U ] 

(48) 

(49) 

where p is the azimuthal angle of scattering, and @3(U) is a scattering function defined by 

where Si U is the sine integral. This component of scattering, only seen for anisotropic spheres, 
exhibits a four-leaf clover appearance with maxima at values of p that are odd multiples of 450 
and at 6 given by (47dh) sin (emax/2) = 4.08. Such scattering is in good agreement with 
experiment and provides a means for readily measuring the size of spherulites. Such may be 
rapidly followed during crystallization (45). 

An equation may also be obtained for scattering with parallel polarizers. This has two 
components, one which is independent of p and depends upon the difference between the 
average polarizability of the spherulite and that of its surroundings, and the other dependent 
upon the anisotropy of polarizability of the spherulite and varying with C O S ~ ~ ,  and thus having 
two-fold symmetry in p. For isotropic spheres, this second component is zero and the first 
component reduces to the equation for scattering from isotropic spheres. At the beginning of 
'crystallization, the spherulite surroundings is amorphous polymer, so the first contribution 
dominates and the scattering is p independent. As crystallization proceeds, the surroundings 
become other spherulites more closely matching the spherulite in average polarizability, so the 
first term decreases. However, because of the growth of oriented crystals within the spherulites, 
their anisotropy increases, so the second term grows leading to the development of two-fold 
symmetry in the Vv pattern. 

These measurements may be made in real time during the rapid crystallization of polymers, and 
thus provide a means for resolving the process into its basic contributions of nucleation, growth, 
and secondary crystallization. The theory has been extended to describe deformed spherulites 
and has been used to follow their response to sample stretching (46). 

Liquid crystals also exhibit anisotropy of polarizability with correlations extending over distances 
comparable with the wavelength of light. This leads to scattering in a manner related to the 
extent of this correlation and to their orientation. Theory has been developed and experiments 
have been conducted for describing such scattering in terms of the number and arrangement of 
disclinations and other orientational defects (47). Changes in scattering accompanying 
orientation by flow, electrical, and magnetic fields have been analyzed. Such changes are basic 
to the operation of display devices based upon scattering such as polymer dispersed liquid 
crystals. 
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N e- ri ng 
Neutron scattering follows the same principles that have been discussed, but differs is several 
aspects: (a) the wavelengths of neutrons are in the range of 0.1 - 2.5 nm and permit studies of 
smaller morphologies than accessible by light scattering and exceed slightly those for x-ray 
scattering, (b) the contrast for neutrons is a nuclear property and can be greatly changed by 
isotopic substitution (deuterium for hydrogen), (c) neutrons penetrate many substances so 
apparatus windows can be made of materials such as aluminum, and (d) the rigorous cleaning of 
systems usually required for light scattering measurements is usually not necessary since the 
dimensions of impurities are usually greater than those of morphologies being studied so the 
scatter at smaller angles and their contrast is usually less than that offered by deuterium-labeled 
molecules (48). Thus, filtering or centrifugation, usually not possible in concentrated solutions or 
bulk, is not required. These advantages are somewhat offset by the low fluxes of available 
sources and the difficulties in collimation and of detection. 

Deuterium substitution makes possible studies in concentrated solutions and bulk polymers not 
possible with x-ray or light scattering (49). A component may be dilute in deuterium 
concentration while concentrated thermodynamically. Thus, measurements of molecule radii of 
gyration and orientation and interaction parameters, x ,  under such conditions have been made 
and studies of the miscibility and phase separation of polymer melts have been conducted (50). 
The possibility of labeling parts of molecules has permitted studies of block copolymers (51), 
branched polymers. and bimodal networks (52), where selected components are labeled. 

Conclusion 
Rheo-optical techniques may be of great value in polymer science and permit the determination 
of information not readily accessible by other means. They are an important complement to 
rheological studies of polimeric systems. 
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