Synthesis of novel vitamin D analogs

R. M. Moriarty,^a R. Penmasta,^b M. S. Rao,^b L.Guo, F. Werner,^a R. G. Mehta^c

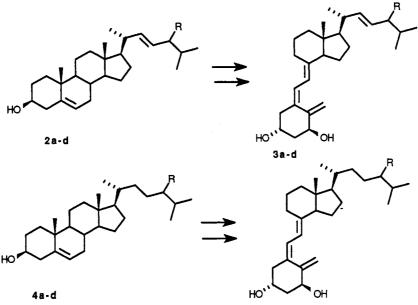
^aDepartment of Chemistry, University of Illinois at Chicago. ^bSteroids Ltd., Chicago, IL. ^cDepartment of Surgical Oncology, College of Medicine, University of Illinois, Chicgo.

Abstract: Structural modifications of the side-chain of vitamin D lead potentially to analogs in which a separation is effected between calcemic activity and cellular differentiation. Vitamin D analogs are used clinically for diseases involving cell proliferation. We have discovered an important lead compound, namely, 24- (R)-ethyl- 1α -hydroxyvitamin D₃ (5d) also called 1α -hydroxyvitamin D₅, which is active as an anticancer agent. The renal metabolism of 5d results in hydroxylation at C₂₆ (C₂₇), to yield 9 or 10. Synthesis of this metabolite is presented.

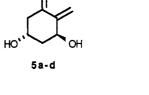
BACKGROUND

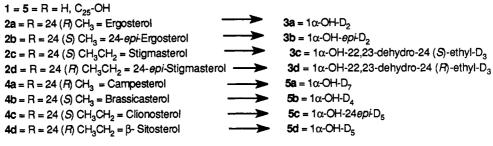
 1α ,25-Dihydroxyvitamin D₃ (1) is the hormonally active form of vitamin D₃ and it is essential for the control of calcium homeostasis in the animals and humans. Recently, a striking development has occurred in the area of vitamin D. The main focus of many vitamin D studies has shifted from the more or less classical calcium homeostasis perspective to the regulation of a multitude of other cellular processes. This shift may be traced basically to the diversity of receptors for 1α ,25-dihydroxyvitamin D₃ (1)¹ which have been discovered throughout the human body. In addition to the more typical sites of action, i.e., intestinal mucosa, bone and kidney, other calcium binding proteins have been discovered in rat brain, spinal cord and hematopoietic cells.

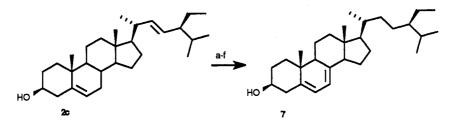
 1α ,25-Dihydroxyvitamin D₃ (1) plays an important role in the area of cancer therapy because of its effect upon three phenomena: cellular induction of differentiation, suppression of cellular proliferation, and both balanced against reduced or low calcemic activity.

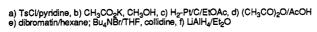

The central synthetic problem in vitamin D chemistry is obtention of an analog in which a separation exists between calcernic activity and cellular differentiation activity and cancer agents. At the levels needed for *in vivo* antileukemic agents, 1α .25-dihydroxyvitamin D₃ (1) induces toxic blood levels of calcium. Thus, a

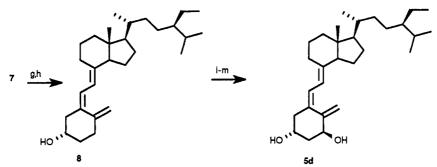
 1α ,25-dihydroxyvitamin D analog in which the side chain is elongated by one carbon atom shows a differentiation activity for leukemia cells about ten times greater than 1 itself but this homolog is approximately equipotent to 1 in calcemic activity.² The differentiation:calcemic activity ratio is improved but this homolog could not be called selective. Addition of two extra carbon atoms, to form a *bis*-homo analog, namely, 24-bishomo-1 α ,25-dihydroxyvitamin D₃ (6) leads to a superior compound² which is devoid of calcemic activity at concentrations where malignant cell antiproliferative and cell differentiation activity are potent.

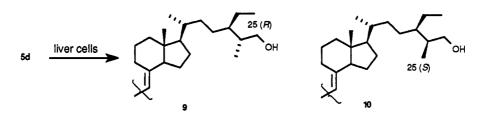

These side-chain modified analogs are synthesized by a number of different routes, all of which basically involve cleavage of the existing side-cahin from a precursor vitamin D and the reattachment of the appropriate synthon via Wittig, Julia or Grignard coupling. In our work we followed a different approach. Nature provides a rich array of side-chain alkylated cholesteryl derivatives. These encompass either a methyl or ethyl group at C₂₄ and an E-double bond at C₂₂₋₂₃, i.e. **2a-d**, **4a-d**. Each of these naturally occurring steroids could be converted into a 1α -hydroxyvitamin, i.e., **2a-d** to **3a-d**; **4a-d** to **5a-d**.

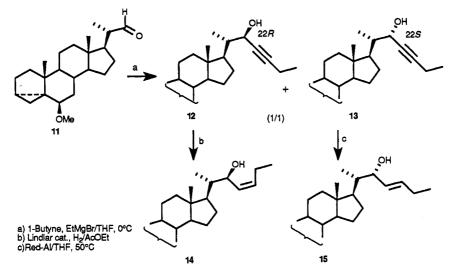

Vitamin D₅ (24 R-ethyl vitamin D₃) (8) was first reported over fifty years ago and was formed from irradiation of 7-dehydrositosterol (7) and showed no effect on blood serum calcium in the chicken.^{3,4} In a modern context this is a very important factor since lack of calcemic activity suggests the examination of the 1 α -hydroxy analog i.e., 5d, as an anticancer agent. In fact it proved to be extremely active in blocking breast cancer. 1 α -OH-D₅ (5d) was shown to inhibit growth and induce differentiation in UISO-BCA-1 and UISO-BCA-4 human breast carcinoma cell lines.⁵ Furthermore 1 α -OH-D₅ (5d) is non-calcemic.


The synthesis of 1α -OH-D₅ (5d) which proceeds from stigmasterol (2c) is as follows:

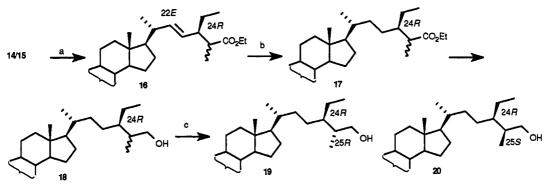








g) hv, Et₂O, C₈H₆, h) Reflux, EtOH, i) TsCl/pyridine, j) CH₃OH/NaHCO₃ (gives 6), Heat, k) SeO₂, t-BuOOH, I) DMSO/AcOH, m) maleic anhydride/EtOAc, chromatographic separation of *cis* from *trans* isomer


The oxidative metabolism of 5d in normal human liver cell HHOI proved interesting.⁶ This system is capable of C₂₅ and C₂₇ hydroxylation. The stereochemistry of enzymatic hydroxylation at C₂₄ of the sidechain of vitamin D analogs, as in the case of 1α -OH-D₂, affords 1α ,24 S (OH)₂D₂.⁷ This involves retention of configuration at C₂₄. It would appear that the hydroxylation at C₂₄ is stereoselesctive⁸ and occurs with retention of configuration in the case of D₂ and *epi* D₄. In the case of D₄ and D₅ the substituent at C₂₄ is reversed relative to D₂ and *epi*-D₄ and hydroxylation occurs at C₂₅ (C₂₆) (**5a** to **9** or **10**). Since a new chiral center is created at C₂₅ it becomes a synthetic problem to prepare the two C₂₆ hydroxylated compounds related to vitamin D₅ and determine which is the natural metabolite i.e., **9** or **10**

The syntheses of 9 and 10 start from stigmasterol (2c) which is converted to the *p*-toluenesulfonate and solvolysis in methanol/ KOAc to yield the i-steroid 22E, 24S- 6β -methoxy-24-ethyl- 3α , 5α -cyclocholest-22-ene (6) which upon ozonolysis yielded aldehyde 11.

Claisen rearrangements 14 to 16 and 15 to 16 provide the correct side-chain for 19 to 20.

a) CH₃CH₂C(OEt)₃/Xylene, b) H₂-Pd, AcOEt, c) Chromatographic separation

The C₂₅ epimeric C₂₆ (C₂₇) hydroxylated stigmasterols are converted to the 1α -hydroxyvitamin D₅ 9 and 10 using the methods described earlier.

REFERENCES

- DeLuca, H. F.; Schnoes, H. K. Annu. Rev. Biochem., 52, 411 (1983). 1.
- Osteem, V. K.; Tanaka, Y.; Prahl J.; DeLuca, H. F.; Ikekawa, N. Proc. Nat. Acad. Sci. USA, 84, 2610 (1987). 2.
- 3.
- Wunderlich, Hoppe-Seylers Z. Physiol. Chem., 241, 116, 119 (1936). Napoli, J. L.; Fivizzani, M. A.; Schnocs, H. K.; DeLuca, H. F. Arch. Biochem. Biophys., 197, 119 4. (1979).
- Mehta, R.; Moriarty, R. M.; Mehta, R. R.; Penmasta, R.; Lazzaro, G.; Liang, G. J. Nat. Cancer. Inst., 89, 212 (1997). 5.
- 6. Unpublished results with G. Jones, Queen University, 1995.
- Strugnell, S.; Byford, V.; Makin, H. L.; Moriarty, R. M.; Gilardi, R.; LeVan, L.; Knutson, J. C.; Bishop, C. W.; Jones, G. *Biochem. J.*, **310**, 233 (1995). DeLuca, H. F.; Schnoes, H. K. *Annu. Rev. Biochem.*, **52**, 411 (1983). 7.
- 8.