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Abstract: Various natural carotenoids have been proven to have anticarcinogenic activity.

Epidemiological investigations have shown that cancer risk is inversely related to the

consumption of green and yellow vegetables and fruits. As b-carotene is present in abundance

in these vegetables and fruits, it has been investigated extensively as a possible cancer

preventive agent. However, various carotenoids which coexist with b-carotene in vegetables

and fruits also have anticarcinogenic activity, and some of these, such as a-carotene, lutein and

lycopene, show a higher potency than b-carotene in suppressing experimental carcinogenesis.

Thus, we have carried out more extensive studies on cancer preventive activities of natural

carotenoids in foods. For example, we found that b-cryptoxanthin showed antitumor initiating

activity, as well as antitumor promoting activity. It is of interest that not only carotenoids

distributed in vegetables and fruits, but also animal carotenoids, such as astaxanthin, are

promising as cancer preventive agents. In the present study, the cancer preventive potential of

phytoene was also con®rmed. The establishment of NIH3T3 cells that produce phytoene by

introducing the crtB gene provides evidence that resistance against transformation, imposed

by transfection of activated H-ras oncogene, was acquired by phytoene production. Analysis of

the action mechanism of these natural carotenoids is now in progress, and some interesting

results have already been obtained; for example, various carotenoids were suggested to

stimulate the expression of RB gene, an antioncogene.

INTRODUCTION

Various factors in foods, such as antioxidative vitamins and carotenoids, phenolic compounds,

terpenoids, steroids, indoles and ®bers, have been considered to be responsible for the reduction of life

style-related diseases, including cancer. Among them, carotenoids have been studied widely and have

been proven to show diverse bene®cial effects on human health. Initially, carotenoids were suggested to

serve as precursors of vitamin A as the active compound. In this context, b-carotene has been studied

most extensively, as b-carotene has the highest provitamin A activity among carotenoids. However, Peto

et al. [1] suggested that b-carotene could have a protective effect against cancer without converting to

vitamin A. Therefore, various carotenoids other than b-carotene may also be able to suppress
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carcinogenesis. Of more than 600 carotenoids identi®ed to date, about 40 carotenoids are found in our

daily foods. Thus, we decided to evaluate the biological activities of these carotenoids, and found that

some showed more potent activity than b-carotene in suppressing the process of carcinogenesis. It is of

interest that not only plant carotenoids, but also animal carotenoids, are promising as cancer preventive

agents.

Some natural carotenoids, such as phytoene, are unstable when they are puri®ed, and it is thus very

dif®cult to examine their biological activities. In such cases, stable production of these carotenoids in

target cells may be helpful for more accurate evaluation of their biological properties. In this context, we

tried to develop a new method for the synthesis of phytoene in animal cells. Establishment of mammalian

cells producing phytoene was performed by the introduction of the crtB gene, which encodes phytoene

synthase. These cells were proven to acquire resistance against transformation, imposed by transfection

of activated H-ras oncogene.

ANTICARCINOGENIC ACTIVITY OF NATURAL CAROTENOIDS

Among the carotenoids distributed in our daily foods, a-carotene, lutein, zeaxanthin and lycopene, as

well as b-carotene, are now being investigated by international collaboration as promising candidates for

cancer prevention, as these carotenoids are commonly found in vegetables and fruits, and are also

detectable in human plasma.

a-Carotene is found in vegetables, such as carrots and pumpkin. Initially, we found that a-carotene

induced G1-arrest in the cell cycle [2]. As various agents which induce G1-arrest have been proven to

have cancer preventive activity, we evaluated the anticarcinogenic activity of a-carotene. a-Carotene

showed a higher activity than b-carotene in suppressing tumorigenesis in skin, lung, liver and colon

[3,4].

Lutein is the dihydroxy form of a-carotene, and is distributed among a variety of vegetables, such as

kale, spinach and winter squash, and fruits, such as mango, papaya, peaches, prunes and oranges. An

epidemiological study in the Paci®c Islands indicated that people with a high intake of all three

compounds (b-carotene, a-carotene and lutein) had the lowest risk of lung cancer [5]. Thus, the effect of

lutein on lung carcinogenesis was examined. Lutein showed antitumour promoting activity in a two-stage

carcinogenesis experiment in the lung of ddY mice, initiated with 4-nitroquinoline-1-oxide (4NQO) and

promoted with glycerol. 4NQO (10 mg/kg body weight), dissolved in a mixture of olive oil and

cholesterol (20:1), was given by a single subcutaneous injection on the ®rst experimental day. Glycerol

(10% in drinking water) was given as a tumor promoter from experimental week 5 to week 30

continuously. Lutein, 0.2 mg in 0.2 mL of a mixture of olive oil and Tween 80 (49:1), was given by oral

intubation three times a week during the tumor promotion stage (25 weeks). Treatment with lutein

showed a decreased tendency for lung tumor formation: the control group developed 3.1 tumors per

mouse, whereas the lutein-treated group had 2.2 tumors per mouse. Lutein also inhibited the development

of aberrant crypt foci in Sprague±Dawley (SD) rat colon induced by N-methyl-nitrosourea (MNU) [4].

Zeaxanthin is the dihydroxy form of b-carotene, and is distributed in various vegetables. Recently,

some features of zeaxanthin were elucidated. For example, it was found that spontaneous liver

carcinogenesis in C3H/He male mice was suppressed by treatment with zeaxanthin (at a concentration of

0.005%, mixed as an emulsion in drinking water), as shown in Table 1.
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Table 1 Effect of zeaxanthin on tumorigenesis in mouse liver

Number Tumor-bearing Average number

Group of mice mice (%) of tumors per mouse

Control 14 35.7 1.75

�Zeaxanthin 12 8.3 0.08

C3H/He male mice were used. Zeaxanthin, 0.005% in drinking water, was given during the whole period of the

experiment (40 weeks).



Lycopene occurs in our diet predominantly in tomato products. Recently, the exceptionally high

singlet oxygen quenching ability of lycopene was found [6,7]. An epidemiological study in elderly

Americans indicated that a high tomato intake was associated with a 50% reduction of mortality from

cancers at all sites [8]. A case-control study in Italy showed the potential protection of a high consumption

of lycopene in the form of tomatoes against cancers of the digestive tract [9]. An inverse association

between a high intake of tomato products and prostate cancer risk was also reported [10]. The

anticarcinogenic activity of lycopene was found in animal models in the mammary gland, liver, lung, skin

and colon [4,11]. A study in mice with a high rate of spontaneous mammary tumors showed that the

intake of lycopene delayed and reduced tumor growth. Spontaneous liver carcinogenesis in C3H/He male

mice was also suppressed. Treatment for 40 weeks with lycopene (at a concentration of 0.005%, mixed as

an emulsion in drinking water) resulted in a signi®cant decrease of liver tumor formation: the control

group developed 7.7 tumors per mouse, whereas the lycopene-treated group had 0.92 tumors per mouse

(P < 0.005). Lycopene showed antitumor promoting activity in a two-stage carcinogenesis experiment in

the lung of ddY mice, initiated with 4NQO and promoted with glycerol. Lycopene, 0.2 mg in 0.2 ml of a

mixture of olive oil and Tween 80 (49:1), was given by oral intubation three times a week during the

tumor promotion stage (25 weeks). Treatment with lycopene resulted in a signi®cant decrease of lung

tumor formation: the control group developed 3.1 tumors per mouse, whereas the lycopene-treated group

had 1.4 tumors per mouse (P< 0.05). The antitumor promoting activity of lycopene was con®rmed by

another two-stage carcinogenesis experiment: lycopene showed antitumor promoting activity in a two-

stage carcinogenesis experiment in the skin of ICR mice. From 1 week after initiation by 100 mg of 7,12-

dimethylbenz[a]anthracene (DMBA), 1.0 mg (� 1.6 nmol) of 12-O-tetradecanoylphorbol-13-acetate

(TPA) was applied twice a week for 20 weeks. Lycopene (160 nmol, molar ratio to TPA� 1:100) was

applied with each TPA application. At week 20 of promotion, the average number of tumors per mouse in

the control group was 8.5, whereas the lycopene-treated group had 2.1 tumors per mouse (P < 0.05).

Lycopene also inhibited the development of aberrant crypt foci in SD rat colon induced by MNU (three

intrarectal administrations of 4 mg in week 1). Lycopene (0.12 mg, suspended in 0.2 ml of corn oil,

intragastric gavage daily) or vehicle as control were administered during weeks 2 and 5. The mean

number of colonic aberrant crypt foci in the control group at week 5 was 69, whereas the lycopene-treated

group had 34 (P < 0.05).

In addition to the carotenoids mentioned above, b-cryptoxanthin seems to be a promising carotenoid,

as it showed the strongest inhibitory activity in the in vitro screening test: b-crytoxanthin suppressed

TPA-induced expression of the early antigen of Epstein±Barr virus in Raji cells with the highest potency

among the carotenoids tested [12]. TPA-enhanced 32Pi-incorporation into phospholipids of cultured cells

was also inhibited by b-cryptoxanthin. b-Cryptoxanthin is distributed in our daily food, such as oranges,

and is one of the major carotenoids which is detectable in human blood. Thus, it seems worthwhile to

investigate this compound more precisely. In this context, we further examined the anticarcinogenic

activity in vivo.

b-Cryptoxanthin showed antitumor promoting activity in a two-stage carcinogenesis experiment in the

skin of ICR mice, initiated with DMBA and promoted with TPA. b-Cryptoxanthin (160 nmol, molar ratio

to TPA� 1:100) was applied 1 h before each TPA application. At week 20 of promotion, the percentage

of tumor-bearing mice in the control group was 64%, whereas the percentage of tumor-bearing mice in

the group treated with b-cryptoxanthin was 29%. The average number of tumors per mouse in the control

group was 2.7, whereas the b-cryptoxanthin-treated group had 1.6 tumors per mouse (P< 0.05).

b-Cryptoxanthin also showed antitumor initiating activity in a two-stage carcinogenesis experiment in

the skin of SENCAR mice, initiated with peroxynitrite (390 nmol, once) and promoted with TPA. b-

Cryptoxanthin (0.0025% in drinking water) was administered from 1 week before to 1 week after the

initiation by peroxynitrite. At week 20 of promotion, the average number of tumors per mouse in the

control group was 6.3, whereas the b-cryptoxanthin-treated group had 2.5 tumors per mouse (Table 2).

Furthermore, b-cryptoxanthin inhibited the development of aberrant crypt foci in SD rat colon induced

by MNU (three intrarectal administrations of 4 mg in week 1). b-Cryptoxanthin (0.048 mg, 0.24 mg or

1.2 mg suspended in 0.2 ml of corn oil, intragastric gavage daily) or vehicle as control were administered

during weeks 2 and 5. The mean number of colonic aberrant crypt foci in the control group at week 5 was

Cancer prevention by carotenoids 2275

q1999 IUPAC, Pure Appl. Chem. 71, 2273±2278



42, whereas those in the groups treated with b-cryptoxanthin at doses of 0.048 mg, 0.24 mg or 1.2 mg

were 26, 25 and 25, respectively. Based on these data, an additional study on b-cryptoxanthin was carried

out. Four groups of F344 rats (n� 25 each) received an intrarectal dose of 2 mg MNU, three times a week

for 5 weeks, and were fed a diet supplemented with or without b-cryptoxanthin (0.0025%). The colon

cancer incidence at week 30 was signi®cantly lower in the b-cryptoxanthin diet group (68%) than in the

control group (96%) (P< 0.05). The tumor multiplicity was also lower in the b-cryptoxanthin-treated

group (1.4 tumors per rat) than in the control group (1.7 tumors per rat), but not statistically signi®cant.

Analysis of the action mechanism of b-cryptoxanthin reveals that it stimulates the expression of the

RB gene, an antioncogene.

Astaxanthin, which is found in shrimp, crab and salmon, has been proven to suppress spontaneous liver

carcinogenesis in C3H/He male mice. The mean number of liver tumors was signi®cantly decreased by

astaxanthin treatment as compared with that in the control group: the control group developed 0.87

tumors per mouse, whereas the astaxanthin-treated group had 0.27 tumors per mouse (P < 0.05) (Table 3).

ESTABLISHMENT OF PHYTOENE PRODUCING MAMMALIAN CELLS, AND ANALYSIS
OF THEIR PROPERTIES

Phytoene, which is detectable in human blood, has been proven to suppress tumorigenesis in skin. It was

suggested that the antioxidative activity of phytoene may play an important role in its action mechanism.

In order to con®rm the mechanism, a more precise study is needed. However, phytoene becomes unstable

when it is puri®ed, and thus it is very dif®cult to examine its biological activity. Therefore, the stable

production of these carotenoids in target cells, which may be helpful for the evaluation of their biological

properties, was attempted. As the phytoene synthase encoding gene, crtB, has already been cloned from

Erwinia uredovora [13], we used it for the expression of the enzyme in animal cells. Mammalian

expression plasmids, pCAcrtB, to transfer the crtB gene to mammalian cells, were constructed as follows.

First, the sequence around the initiation codon of the crtB gene on the plasmid pCRT-B was modi®ed by

polymerase chain reaction (PCR) using the primers to replace the original bacterial initiation codon TTG

with CTCGAGCCACCATG, which is a composite of the typical mammalian initiation codon ATG

preceded by the Kozak consensus sequence and a Xho1 recognition site. The Xho1 linker which harbors a

cohesive end for the EcoR1 site was ligated to the EcoR1 site at the 30-end of the crtB gene, and the 969-

base pair (bp) Xho1 fragment was cloned into the Xho1 site of the expression vector pCAGGS. The

resulting plasmid pCAcrtB drives the crtB gene by the CAG promoter (modi®ed chicken b-actin

promoter coupled with cytomegalovirus immediate early enhancer).
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Table 2 Effect of b-cryptoxanthin on tumorigenesis in mouse skin

Number Tumor-bearing Average number

Group of mice mice (%) of tumors per mouse

Control 15 100 6.3

�b-Cryptoxanthin 15 93 2.5

SENCAR mice were used. tumor initiator: peroxynitrite (390 nmol, once). Tumor promoter: TPA (1.7 nmol/painting,

twice a week). b-Cryptoxanthin (0.002% drinking water) was given from 1 week before to 1 week after the initiation.

Table 3 Effect of astaxanthin on tumorigenesis in mouse liver

Number Tumor-bearing Average number

Group of mice mice (%) of tumors per mouse

Control 15 53 0.87

�Astaxanthin 15 27 0.27

C3H/He male mice were used. Astaxanthin (0.2 mg suspended in 0.2 mL of corn oil, intragastric gavage, three times

per week) was given for 40 weeks.



Plasmids were transfected either by electroporation or lipofection. For the gene transfer to NIH3T3

cells, which were cultured in Dulbecco's modi®ed minimum essential medium (DMEM) supplemented

with 4 mM L-glutamine, 80 U/mL penicillin, 80 mg/mL streptomycin and 10% calf serum (CS), the

parameter for electroporation using a Gene Pulser (BioRad) was set at 1500 V/25 mF with a DNA

concentration of 12.5±62.5 mg/mL. Lipofection was carried out using Lipofectamine (Gibco BRL)

according to the protocol supplied by the manufacturer.

For Northern blot analysis, 20 mg of total RNA was loaded onto a 1.2% formaldehyde agarose gel,

electrophoresed and transferred to a nitrocellulose ®lter (Nitroplus). The 969-bp Xho1 fragment of the

crtB gene as mentioned above was labeled with [32P]dCTP by the random primer labeling method and

used as a probe to hybridize the target RNA on the ®lter.

NIH3T3 cells transfected with pCAcrtB showed the expression of a 1.5 kilobase mRNA from the crtB

gene as a major transcript. Those transcripts were not present in the cells transfected with the vector alone.

For analysis of phytoene by high performance liquid chromatography (HPLC), the lipid fraction

including phytoene was extracted from cells (107±108). The sample was subjected to HPLC (column:

3.9 ´ 300 mm, Nova-pakHR, 6 m C18, Waters) at a ¯ow rate of 1 mL/min. To detect phytoene, UV

absorbance of the eluate at 286 nm was measured by a UV detector (JASCO875).

Phytoene was detected as a major peak in the HPLC pro®le in NIH3T3 cells transfected with pCAcrtB,

but not in control cells. Phytoene was identi®ed by UV and ®eld desorption mass spectra.

As lipid peroxidation is considered to play a critical role in tumorigenesis, and it was suggested that the

antioxidative activity of phytoene may play an important role in its mechanism of anticarcinogenic

action, the level of phospholipid peroxidation induced by oxidative stress in cells transfected with

pCAcrtB or with vector alone was compared.

Oxidative stress was imposed by culturing the cells in a Fe3�/adenosine 50-diphosphate (ADP)

containing medium (374 mM iron(III) chloride, 10 mM ADP dissolved in DMEM) for 4 h. The cells

were then washed three times with a Ca2� and Mg2�-free phosphate buffered saline (PBS(ÿ)),

harvested by scraping, washed once with PBS(ÿ), suspended in 1 mL of PBS(ÿ) and freeze±thawed

once. The lipid fraction was extracted from the cell suspension twice with 6 ml of chloroform±-

methanol (2:1). The chloroform layer was collected and dried with sodium sulfate. The sample was

evaporated, and its residue was dissolved in a small volume of HPLC solvent (2-propanol±n-

hexane±methanol±H2O� 7:5:1:1) and then subjected to chemiluminescence-HPLC (CL-HPLC). The

lipid was separated with the column (Finepack SIL NH2-5, 250 mm ´ 4.6 mm i.d., JASCO) by eluting

with the HPLC solvent (see above) at a ¯ow rate of 1 mL/min at 35 8C. Post-column

chemiluminescent reaction was carried out in a mixture of 10 mg/mL cytochrome c and 2 mg/mL

luminol in a borate buffer (pH 10.0) at a ¯ow rate of 1.1 mL/min. To detect lipids, UV absorbance of

the eluate at 210 nm was measured by a UV-8011 detector (TOSOH), and chemiluminescence was

detected with a CLD-110 detector (Tohoku Electric Ind.).

The phospholipid hydroperoxidation level in the cells transfected with pCAcrtB, and con®rmed to

produce phytoene by HPLC, was lower than that in the cells transfected with vector alone. Thus, the

antioxidative activity of phytoene in animal cells was con®rmed.

It is of interest to test the effect of the endogenous synthesis of phytoene on the malignant

transformation process which is newly triggered in noncancerous cells. Thus, the study was carried

out on NIH3T3 cells producing phytoene for its possible resistance against oncogenic insult imposed by

transection of the activated H-ras oncogene. Plasmids with activated H-ras gene were transfected to

NIH3T3 cells with or without phytoene production, and the rate of transformation focus formation in

100 mm diameter dishes was compared. It was proven that the rate of transformation focus formation

induced by the transfection of activated H-ras oncogene was lower in the phytoene producing cells than

in controls cells (Table 4).

This type of experimental method may be applied to the evaluation of the anticarcinogenic activity of

other phytochemicals, as the cloning of genes for the synthesis of various kinds of substances in

vegetables and fruits has already been accomplished. It is particularly useful for the evaluation of the

biological activity of unstable phytochemicals, such as phytoene and other carotenoids.
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Table 4 Suppression of transformation focus formation induced by activated H-ras gene in phytoene producing

NIH3T3 cells

Number of transformed foci

Oncogene Control �crtB

ras-1 (pNCO102) 47 22

ras-2 (pNCO602) 80 15


