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Abstract - (R)-Pantolactone, (S)-—ethyl lactate and other a-hydroxy-car-
boxylic acid derivatives are effective chiral auxiliaries for large-scale
asymmetric Diels-Alder additions of enoates. Mechanistic aspects and prepa-
rations of intermediates for EPC-syntheses of carbocyclic nucleoside ana-~
logs, prostaglandins and other biologically active compounds are described.

INTRODUCTION

Excellent progress has recently been achieved in the development of chiral auxiliaries for
asymmetric Diels-Alder (ADA) reactions (ref. 1). Work of this group has shown that encates of
a-hydroxycarboxylic acid derivatives are very useful chiral dienophiles. (R)- and (S)-lac-
tates 1 and 2 (ref. 2), (R)-pantolactone (3) (ref. 3) and (S)-N-methyl-2-hydroxysuccinimide
(4) were found to be particularly effective auxiliaries.
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1 - 3 are large-scale commodities. The imide 4 is available in one step from (S)-malic acid.
The combination of low cost, ease of enoate formation and hydrolysis, and ready cristalliza-
tion of derivatives of 3 and 4 allows practical large-scale preparations (>100 g) of numerous
building blocks useful for EPC-syntheses of biologically active compounds.

LEWIS ACID CATALYZED REACTIONS—FUNDAMENTALS

Our mechanistic rationale, inter alia based on crystal structures of enoate/Lewis acid com-
plexes (refs. 4,5), for description of titanium tetrachloride catalyzed reactions of enoates
of the auxiliaries 3 and 4 is presented in Scheme 1 for the special case of cyclic dienes
(ref. 6). Essential features of the reactive chelate complexes 5 and 6 are syn-enocate confor-
mations and diastereoface-selective shielding of the encate group by the TiCl, moiety. Quite
generally, Diels-Alder adducts were obtained with diastereoselectivity of ca. 97:3 (7:8 or
10:9) and pure major isomers resulted after recrystallization.
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Earlier work in the area of ADA reactions was aimed at high degrees of stereoselectivity. To-
day, high reactivity of the dienophile and practicality are increasingly recognized as equal-
ly important features. Touchstones for assessing these aspects are the reactions of trans-
crotonates with cyclopentadiene and of acrylates with cyclohexadiene, combinations of low re-
activity. Carried out according to Scheme 1, no difficulties were encountered (ref. 7).
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Some of the carboxylic acids obtained by saponification (LiOH,THF/H,0) of adducts 7 or mono-
cyclic analogs are shown above. B-Bromoacrylates (R=Br, Scheme 1) “are saponified with con-
comittant elimination to give 14. Similarly, treatment with NaOBn/BnOH yields the B-addition
product 15. A1l these compounds are useful for EPC-syntheses of natural products (ref. 8).

CARBOCYCLIC NUCLEOSIDE ANALOGS

Some natural and unnatural carbocyclic analogs of nucleosides display interesting physiologi-
cal effects (antiviral, antibiotic, and antitumor activities) (ref. 9). Recent work of our
group has been directed at synthesizing compounds of this class via enantiomerically pure
Diels-Alder adducts. Here we report a short synthesis of Ohno's lactone (19) which was pre-
viously transformed into (-)-aristeromycin (18) (antibiotic) (ref. 10). In the course of this
work, an intermediate suitable for a synthesis of the antiviral agent cyclaradine (20) (ref.
11) was also obtained.
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(+)(R)-5-Norbornene-2-carboxylic acid (ent-11) yields (1R)-5-norbornen-2-one (21) via a
simple three-step sequence (ref. 12)(Scheme 2). Our synthetic plan called for cis—-dihydroxy-
lation of the double bond and subsequent oxidative cleavage of the C2-C3-bond. To our sur-
prise, reaction of 21 with osmium tetroxide/N-methylmorpholine N-oxide gave mainly the trans-
addition product 22t (ratio 22t:22c ca. 4:1). The source of this anomaly became clear when it
was found that 22c rearranges to 22t upon treatment with base, obviously via retro-aldol re-
action. As a consequence, the hydroxylation was carried out with one equiv. of p-toluenesul-
fonic acid added to the standard agent. This procedure indeed furnished 22¢ in quantitative
yield. Treatment of 22¢ with methylamine in methanol gave 22t in high yield. Transformation
of 22¢ into Ohno's Tactone, via the acetal 23 and ozonization of its silyl enol ether, was
uneventful, The total yield of 19 from 5-norbornene-2-carboxylic acid was 54 %. A route from
22t to cyclaradine (20) is currently being worked out.
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NON-CATALYZED AND LEWIS ACID CATALYZED REACTIONS OF
FUMARATES

In view of their potential experimental simplicity and broad range of applications, non-cata-
Tyzed ADA additions are of great dinterest. However, until very recently little success was
achieved with esters. In contrast, the acgy1ate 24 of (S)-ethyl lactate (2) reacts diaste-
reoselectively with cyclopentadiene at 0 “C in hexane (endo-add.: 80:20, exo-add.: 85:15)
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(ref. 2). The (typically) low endo-exo ratio of 1.7 prevents direct preparative use of these
results. But it was of interest to examine corresponding fumarates which cannot give rise to
endo-exo isomers and, furthermore, were expected to show synergistic activity of their
auxiliary groups and, in consequence, a higher level of selectivity than acrylates (cf. refs.
la, 4). The fumarate 26, displaying diastereoselectivity of 98:2 with cyclopentadiene in n-
hexane (Scheme 3), is indeed the more selective dienophile. It is assumed that the reaction
proceeds via the C,-symmetric species 26 with anti-enoate conformation (cf. Formula) for
which attack from tge more accessible back-face is favored,
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For TiCl,-catalyzed reactions of the acrylate 24, which yield preferred products of opposite
configuration compared to the non-catalyzed reaction, the complex 25 with syn-—enoate confor-
mation is postulated as reactive species (cf. Scheme 1). On extending this model to the fuma-
rate 26 one would expect the 1:1 complex 27 with syn~ and anti-enoate conformations as reac-—
tive species, and therefore antagonistic action of the auxiliary groups, and/or the 2:1 com-
plex 28 with syn-enoate conformations on both sides, and therefore synergistic action of the
auxiliary groups. For differentiation of these complexes, 26 was allowed to react with cyclo-
pentadiene using various TiCl,: 26 ratios and the products (Scheme 3) were analyzed by HPLC.
We interpret the results of thQS series of experiments (Fig. 1) as follows: 27 determines the
mode of reaction at Tow TiCl,: 26 ratios (A), hence the non-selective reaction. In the range
B, competition of the complekx 28 becomes noticeable, which in range C finally dominates and
yields the ester 29b with 95:5 selectivity (ref. 4).

Results obtained with the fumarate of (R)-pantolactone, 30, are displayed in Scheme 4. Compa-
red to 26, the fumarate 30 yields Diels-Alder adducts of opposite configuration due to inver-
se chirality sense of the HO-C-CO moieties of 2 and 3. Thus, for an extensive variety of chi-
ral trans-dicarboxylic acids both enantiomers are accessible via non-catalyzed reactions.
Lewis acid promoted reactions of the fumarate 30 also proceed with high selectivity when
EtA1C1, is employed in excess. For a reason not yet understood, in conjunction with 30,
EtA]C'I2 is more effective than T1‘C'l4.

Diels-Alder reactions with the inexpensive fumarates 26 and 30 are of interest for EPC-syn-—
theses of physiologically active compounds - e.g., the (2S,3S)-5-norbornene-2,3-dicarboxylic
acid readily obtainable (ref. la) from adducts 29b or 31a is a starting material for the ICI
prostaglandin synthesis (ref. 13). Another, less obvious entry into the prostaglandin series
is shown in Scheme 5. Key step is the decarboxylative 1,3-elimination of the easily prepared
jodolactone 35 which furnishes the nortricyclene 36 in quantitative yield. From the lactone
36, straightforward synthetic tactics leads to the Corey-Sutherland intermediate 39 (ref. 13)
and the syn-isomer 38 (76 7 yield from 35) which opens avenues to a large variety of impor-
tant natural products (cf. ref. 14).
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