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Equilibrium behaviour of non-spherical non-polar
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Abstract - Perturbation theory of convex molecule fluids is outlined and
applied to correlate orthobaric data of several convex molecule systems.
Calculated data from the fitting procedure are compared with results of
the variant of the perturbation theory proposed for the two-centre LJ
systems. A modification of the convex-molecule perturbation theory for
the gaussian overlap fluid is given and obtained thermodynamic functions
compared with the simulation data. The accurate hard body equations of
state are listed and mixing rules for their parameters discussed.

INTRODUCTION

Perturbation theories of non-spherical non-polar molecule fluids offer ever improving de-
scription of the equilibrium behaviour of a large oroup of real liquids and their mixtures.
Besides the direct application of perturbation expansions to evaluate thermodynamic func-
tions of molecular fluids the theory also provides arguments for a further improvement of
the so-called augmented van der Waals equations of state and mixing (eventually also combin-
ing) rules for their parameters.

The methods proposed for simple fluids form a basis for the development of the perturbation
theory of non-spherical molecule fluids. Two variants of the theory have been widely used -
that due to Barker and Henderson (B-H), (ref. 1.) extended to mixtures by Leonard et al.
{ref. 2.) and the blip-function approach of Weeks-Chandler and Andersen {WCA) (ref. 3.).

In both these variants soft spheres are taken as a reference and attractive (plus the remain-
ing part of repulsive) forces contribute to perturbation terms. The thermodynamic behaviour
of the reference is determined via the properties of the representative hard spheres whose
diameter depends on temperature in the former- and on temperature and density in the latter
case. The first-order WCA theory is very accurate at high densities (for the packing fract-
ion y > 0.4); it is less accurate at low and medium densities. The second-order B-H theory
is only slightly less accurate at the highest densities but superiour at lower densities.

PAIR POTENTIALS OF NON-SPHERICAL MOLECULES

Description of the equilibrium behaviour of the non-polar molecule fluids depends on the mo-
del employed to characterize pair interactions of (generally) non-spherical molecules. Three
models have been used: i) the multicentre (site-site) potential, ii) Kihara generalized pair
potential iii) gaussian overlap potential.

The multicentre pair potential, u(1,2), given by the formula (ref. 4.)

- 12 6
u(1,2) = 4 L Cy [log /g " = (o /00 )] (1)
|where o denotes centres on molecule 1 and y those on molecule 2| offers the most detailed
description of molecular interactions. The main advantage of the potential manifests itself
in simulation studies where the determination of u(1,2) is simple. Even simpler for this
purpose is the gaussian overlap model (o)

ug(1,2) = 4 e(Byd,8) ([o(l,1)/6] 12 - [o(l;0,3)/61% (2)
If y = (Az-l)/(x2+1) and A is the axis ratio
e(l,0,7) = €0 (GOCE) (3)
S>>+ (2 > > (2
IO x  (Tup*ru,)© (tlqg=tu,)°
o(l}l)7) =0y [1-- 1 1+ +2 o1 *2 37172 (4)

2 1+X(u]u2) 1-X(ﬁ]u2)

In this model, however, the shape of the molecule can be either prolate or oblate ellipsoid
of revolution.
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In the generalized Kihara potential (ref. 6.)
u(1,2) = u(s) = dey[(op/s)'? - (0,/5)°] (5)

The shape of a molecule - which reflects repulsive forces - can be modelled by any convex
model. One can say that the Kihara pair potential reproduces in a detailed way the repulsive
forces whereas some kind of averaging of the effect of attractive forces takes place. Simu-
lations of other model systems than the rod-1ike molecule fluids are quite involved; on the
other hand the formulation of the perturbation theory is - due to the fact that the poten-
tial depends only on one variable, s - very simple.

PERTURBATION THEORY OF NON-SPHERICAL MOLECULE FLUIDS

For the multicentre pair potential Kohler and Fischer (refs. 7,8) proposed a perturbation
ethod which was an extension of the WCA blip-function approach. For the given orientation
Wy the WCA-split is considered,

u°(r$]$z) = u(rZ]ZZ) - umin($1$2) r < rm1n(;132)
= >
0 r o> rmin(&1w2) (6)
and
WP(rdydy) = upg(By) r < (igay)
= u(r$]$2) r o> rmin($1$2) (7)

Properties of the reference are determined via the hard body equation of state applied to
hard dumbells (or other fused hard-sphere models) with the same site-site distance as that
of the considered molecule and with the diameter of the site sphere obtained from the blip-
function relationship

7Y [<exp(-8u %)> - <exp(~-8 >] df = 0 (8)

The backgroHnd correlation function, Y, corresponds to the soft-body spherically symmetric
potential,¢ (r), for which

exp[-86°] = <exp[-su°(r$]$2)]> (9)

The function Y is evaluated, from the Percus-Yevick integral equation (P-Y); the molecular
correlation function, g(rw1w2) in the perturbation integral is then approximated by

g(rﬁ]az) = exp[-suo(rZ]Zz)] Y(r) (10)
Only the first-order perturbation term is considered in this theory,
FU/NKT = (o/2KT) s <uP(riys,) expl-8u®(ri3,)]> Y(r) oF (11)

where symbol <> denotes averaging over all orientations which - contrary to that in the
Kihara potential - is related to centre-to-centre distance. The perturbation method for the
multicentre potential was applied to several systems of diatomic molecules and highly sym-
metric polyatomic molecules (like CC]4 or SF6) and to mixtures of spherical and linear mole-
cules (refs. 9,10).

The basic relationships of the perturbation theory of the convex (rod-Tike) molecules can be
found in ref. 11. Recently,.two. variants of the theory have been employed in our laboratory:
in the former (ref. 12) we considered the second-order perturbation expansion (for the Helm-
holtz energy and pressure) in the macroscopic compressibility approximation (mc) of the WCA-
~-hybrid approach (the WCA-split of the pair potential into the reference and perturbation
part in combination with the B-H-Tike determination of the thickness of representative hard
convex body, hchb). The Helmholtz energy is

(F-FMB)NKT = (o/2kT) 0{:’up< ) h°b< ) s

S1+s+2

]2 hcb

= (o/4KT) (3p/5P)"CP f [uP( $) S1pgepds (12)

Perturbation integrals included in the first and second term of Eq (12), were each separated
into two parts at s = 1.2 o3 these parts were evaluated numerically and the cobtained values
fitted by polynomials. The resulting expressions were then employed to describe the equilib-
rium behaviour of pure fluids. The same equation of state and expression for the Helmholtz
energy were used to characterize both the 1iquid and vapour part of the coexistence curve;
orthobaric densities along the coexistence curve were used to adjust parameters of the Kiha-
ra potential of 28 compounds. As a result of the use of the same expression for the both
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branches of the coexistence curve the method enables to describe the equilibrium behaviour
up to high reduced temperatures T*Z 0.9; values of the parameters (mainly the size of the
core) differ slightly from those obtained by the variant described in next part.

In the latter variant of the perturbation theory (of the convex molecule fluids) the exten-
sion of the Barker-Henderson theory to molecular fluids is employed (ref. 13). The represen-
tative hard convex bodies are parallel bodies to the convex cores with a thickness obtained
from

f {exp[- Buth] - exp[Bu%) S, =0 (13)

1+S+1

|Here S, s+i 1s the mean surface area of two convex cores with the surface-to-surface dis-
tance, % The hard convex body equation of state for the given representative model
yields the reference residual Helmholtz energy. To determine the first-order perturbation
term, F],

F/NKT = (o/2KT) f WP(s) g"P(s) s, 4ids (14)

we express first the average correlation function, gth, in terms of the total correlation
function, hhcb = ghcb_1, and split the integral in Eq (14) into two parts, the larger of
which can be easily determined analytically. The total correlation function, hNCD, was ap-
proximated on the basis of the hehs” - function of the equivalent hard spheres, (ehs, i.e.
spheres of the same volume as the studied convex bodies),

1D (1) = (SNED/sehS) heNS(4)s x = 1at/ (14R}4R]) (15)

* *
(where R = R/d, S~ = S/d2 and R, S, V are the mean curvature integral/4m, surface area and
volume of the core). It was shown formerly that the approximation is very accurate for two
typical hard convex bodies, prolate and oblate hard spherocylinders and works well also in
the case of mixtures. The above approx1mat1on was employed already in the former variant.
Here we substitute hehs(x) = hPY(x )| hexact(1)/hPY(1)], where symbol P-Y denotes the Percus-
-Yevick approximation (to the 0rnste1n Zernicke equation) which leads to the analytic Lapla-
ce transforms of the function xg(x) or xh(x). To make full use of this fact we substitute
the double Yukawa (2-Y) pair potential

Uyy(x) = (e/x) {exp[-A(x-1)] - exp[-B(x-1)]} , x =r/o (16)

for the Kihara function in the second part of the perturbation integral. In this way a part
of the integral (containing hNCDP) can be expressed analytically as a sum of differences in
the Laplace transforms, corresponding to parameters A, B of the 2-Y potential, plus a cor-
rection term (due to the fact that the lower bond of the perturbation integral equals ¢ and
not twice the thickness of the representative hard body). Thus,

Fy/NKT = (2r0%0/T") [0+ & K W] (17)
-Q = (8/9) + 4R™(3/5) + 2(S"/4r + R"2)(24/55) (18)
hcb
hhCh(1) 1
v gy W) 0P Sy, s (19)
and
= L{xh(x)} (1") (20)

Similarly, the perturbation expansion of the compressibility factor can be written in an
analytic form, too. The relationships for the Helmholtz energy and pressure make it possible
to determine quickly the coexistence curve without any intermediate procedure of fitting nu-
merical data.

In the previous study (ref. 13) we adjusted two parameters of the Kihara pair potential (e
and o) to the saturated liquid properties of pure compounds while determining the other pa-
rameters from the bond lengths and angles. The perturbation expansion was used to describe
the liquid branch of the coexistence curve whereas the vapour phase was characterized by the
virial expansion including the second virial coefficient. The results and some interrela-
tions between the Kihara and 2-centre Lennard-Jones parameters were given in ref. 13.
Recently we have modified this approach by including the approximate third virial coefficient
(only for the repulsive forces) and adjusting three parameters, i.e. ¢, o and size of the
spherical core or length of the rod-like molecule, etc. As a result better agreement of the
calculated and experimental coexistence curves are found, see Fig. 1 where the coexistence
curve of argon is shown. In Figs 2 - 4 the per cent deviations in pressure and dénsity vs.
temperature for Ar, C0, and ethane are depicted. For comparison the data found within Kohler-
-Fischer perturbation %heory are given, too. The agreement is very good even for more comp-
lex molecules 1ike carbon tetrachloride and benzene.
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TABLE 1. Excess thermodynamic functions of the equimolar Xe~C2H6 system
at 161 K for k]2 =1.0

GE(3/mo1) HE (3/mo1) vE(emd)
Convex pert. theory (2 pars) -2 -17 -0.04
Convex pert. theory (3 pars) -32 -72 -0.08
Multicentre part. theory =113 -193 -0.36
Experimental (ref. 10) -29 -52 -0.12

One can see that the recent variant of the perturbation method for convex molecules works at
least with the same quality as the theory of multicentre fluids. By introducing the non-zero
core (in the case of spherical molecules) while still considering 12-6 function we can reach
the same effect as Fischer obtained by modifying the pair potential, e.g. by introducing the
24-6 form. The analytic form of the perturbation expansion offers a deeper insight in the
molecular fluid behaviour; the range of the reduced temperatures can be larger then in the
case of the multicentre perturbation theory.

The perturbation theory of convex molecule fluids was extended (ref. 14) to mixtures, too.
The theory compares well with our recent Monte Carlo data on mixtures of L-J and Kihara rod-
-Tike molecules.

In applications to real systems the excess thermodynamic functions of binary mixtures were
determined (ref. 14). These systems were formerly studied also by Bohn et al. (ref. 10); a
comparison of our results with those of Bohn et al. and with experimental data indicates a
similar quality of the prediction. In majority of cases the geometric mean value for the un-
like parameter, e,,, should by multiplied by the k,,-factor which is usually = 0.97-1.00.
Recently we reca]éalated the excess properties of lgme systems with the new parameters of
the pure components; as a rule no substantial changes were found. However, in the case of
the Xe-C H system better agreement with results of Bohn et al. resulted. In Table 1 a com-
parison ?s given of the excess functions of the equ1mo1ar Xe-C,H. system at 161 K calculated
from the old and new set of parameters (with k]2 )5 exper1m5n§a1 data and results of Bohn
et al. are given, too.

It is obvious from the description of the fitting procedure that the parameters should be
used for the description of the equilibria at Tower temperatures and/or pressures whereas
those given in ref. 12 could better serve at higher temperatures.

APPLICATION OF THE PERTURBATION THEORY OF CONVEX MOLECULE
FLUIDS TO THE GAUSSIAN OVERLAP SYSTEMS

Systems interacting via the gaussian overlap (GO) pair potential have been studied recently
by several authors (see ref. 15 and references given therein). Thermodynamic functions for
the GOCE system are given in ref. 15 for three values of A (the ratio of axes of the ellip-
soid of revolution) at several temperatures and densities. The simulation data were inter-
preted in terms of the Kohler-Fischer theory. There is close resemblance of the gaussian
overlap and Kihara potentials following from the fact that in both the potentials the
convex shape of molecules is considered and the pair interaction of nonspherical molecules
is given by one contribution only. There are important differences: i) In the former poten-
tial the energy depends on the mutual orientations of a pair of molecules; ii) there is no
hard core, and iii) the mean surface area of two hard GOCE models is not given exactly by
the Steiner formula

Sipj = Sj * 87 RRy S, (21)
Usually, however, the difference between the simulated values of S j of the GOCE system
and those calculated via (21) is small and can be neglected.

Before the application of the convex molecule perturbation theory to the gaussian overlap
systems it is necessary to find relationships between the GOCE parameters and those of the
Kihara potential. It is essential to put ¢, = €60CE = %o To relate the g-parameters we as-
sume equality of the second virial coeff1c§ent ]

BK (e,0) = BGOCE(EO’GO) (22)

Whereas the formula for the second virial coefficient of the Kihara molecules is readily
available (ref. 16) Kabadi and Steele (ref. 17) Tisted values of <(aG0CE/cO)3> of the rela-
tionship

= 3 3 * 2
BGOCE = -21r0° <(°G0CE/00) >/ fLJ(T ) xdx (23)
as a function of the axis ratio of the ellipsoid of revolution. It is evident that the pro-

posed averaging method resembles closely that used in the RAM and other theories.
To formulate the expression for the Helmholtz energy we consider an ellipsoid with the basic
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axis length, o, and the length-to-breadth ratio, A, where both parameters are equal to
those of the g?ven GOCE model. We then assume that the mentioned ellipsoid is the parallel
body to a hypothetical smaller core with thickness, /2, |where ¢ follows from Eqs (22) and
{23)|; the pair potential depends on the surface-to-surface distance, s, between these two
hypothetical cores. If d is twice the thickness of the representative hard ellipsoid of re-
volution (c = d/o) the geometric characteristics of the representative ellipsoid are

4
R.=R=-6, S =5-81Rs+4ns%, V_ =V -Ss+dnRs? - — 18
r r r 3
where & = o(1-¢)/2. In this way both the reference and perturbation terms can be evaluated
from the formerly given relationships. From the study of Sediawan et al. (ref. 15) computer
data are available of the GOCE systems with A = 0.5, 1.3 and 1.55 at several temperatures
and broad range of densities. In Figs 5-6 we present a comparison of our results for the
residual Helmholtz energy and pressure for the system with x» = 1.3 at the reduced temperatu-
res T* = 1,1.5 and 2. In the next two figures (Figs 7-8) a comparison is given of the resi-
dual Helmholtz energy calculated from the convex molecule- and multicentre variants of the
perturbation theory for more extreme prolate and oblate gaussian overlap models and in
Fig. 9 the reduced residual energy is plotted for x = 0.5. One can see a good agreement of
the predicted thermodynamic functions (from the convex molecule version of the perturbation
theory) with the simulation data at alil conditions even at extreme values of .
One can thus conclude that i) the simulation data on GOCE systems can be well interpreted by
the modified convex-molecule perturbation theory and vice versa the easily obtainable simu-
lation data on GOCE systems can substitute the computer data on convex molecules of the ob-
late shape ii) the used averaging via the second virial coefficient represents an easy and
reliable way of obtaining parameters of the Kihara pair potential.

3 (24)

HARD BODY EQUATIONS OF STATE AND THEIR MIXING RULES

In majority of perturbation theories the thermodynamic functions of reference systems are
evaluated via the properties of the representative hard bodies. Thus, the accurate equation
of state is very important for the description of equilibrium behaviour of fluids. For hard
spheres the Carnahan-Starling equation has been used most frequently. Recently, however,
Kolafa (ref. 18) proposed a modification of it

8P/o = 1/(1=n) + 3n/(1-n)% + n2(9-2n-2n%)/3(1-n)

This equation was extended to hs-@ixtures and non-spherical bodies by the present author
(ref. 19); ifr = Zo;R:s q = Zo;R%s s = 2p.S, and v = Zo;V;

8P/p = 1/(1-n) + rs/p(1-n)% + qs2(9-2n-2n%)/270(1-n)

The last relationship with the Boublik-Nezbeda (B-N) rule (ref. 20) to determine parameters
R;'s is the best available equation of state of mixtures of hard dumbells and other fused
hlrd-sphere models (FHSM). For pure fluids it reduces to

8P/p = 1/(1=n) + 3an/(1-n)% + «®n?(9-2n-20%)/3(1-n)° (27)

3 (25)

3 (26)
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Another set of accurate equations of state of hard dumbells has been devised yielding simply
tractable expressions for the chemical potential of dumbells (ref. 19).

There are two weak points of the application of Eg. (27) to fused hard-sphere models: i) the
B-N rule is not applicable for L* >> 1, ii) with increasing the number of sites of a linear
molecule keeping the distance of the outmost sites, L, constant the FHSMs reduce consequent-
ly to the prolate spherocylinder described by the relationship (valid for different types of
convex bodies)

8P/o = 1/(1-n) + 3an/(1-n)% + an2[3a-(5a-5)n]/(1-n)3 {28)
which for mixtures assumes the form
8P/0 = 1/(1-n) + rs/o(1-n)% + [as2(1-2n) + Brsn?]/3p(1-n)3 (29)

In passing we note that an analogy of the B-N rule can be employed also with the equation of
state of two-dimensional hard dumbells. We have proposed (ref. 21)

8P/0 = 1/(1=ny) + yny(T4yny/8)/(1-ny)? (30)

where y = 02/4nA (0. is a perimeter, A - area and n, = pA_). It appears, however, that the
B-N rule do&s not y181d accurate enough~prediction of the two-dimensional dumbells; another
prescription in which enlarger dumbell is considered for the determination of Oc and AC
works more satisfactory.
Several of the hard body expressions combined with an empirical attractive term result in
the "augmented van der Waals" (vdW) equations of state. For their applications in routine
chemical-engineering methods it is often necessary to employ the one-componen§ equation of
state with parameters obtained from the mixing rules. Quite often vdW rule, d° = TIXX.d3.,
is considered. This, however, is valid only at low densities. To improve the accura&y% 1
the density-dependent mixing rule is introduced. Recently Meyer (ref. 22) proposed
d3 3

2
= x.dY. + — X, (d.-d.
I Xx.x.d p n x1xJ(d1 dJ) d

m i%3%i3 (31)

iJ
The introdugtion of3the density dependent mixing rule is, however, not necessary, if we take
correctly d% = 1x;d}, and employ Eq (27) or (28? with o given by [cf ref. 23]

oy = ) Xixjaijvij/): x].Vi (32)

where

- 1/3 2/3 | 2/3 1/3

a'ijv'ij > [(ou,iV,i) (onjVJ.) (oc,iV,i) (ujVJ-) ] (33)
Even better - and én the case of the hard sphere mixtures the exact results can be found by
substituting for o > B where

_ 2/373 2
8y = [ x; (0 Vi) 7T7/ (2 x,v,) (34)
It is evident that mixing rules (32) and (34) are,quite simple and lead to the density-inde-
pendent parameters. g differs considerably from o only in the case of extreme differences
in the size of molecules. For hard sphere mixture® the use of o_ and 8 corresponds to the
application of the exact equation of state. Comparison of the c@mpressti]ity factors calcu-
lated from density-dependent and above-mentioned mixing rules (for o_and g_) for hard sphe-
re mixtures with the diameter ratios 3:1 and 1:0.6 is disclosed in Fmgs 10 = 11. In Figs

Mixture of hard spheres D
of the ratio 3:1
8r .05 7 Mixture of hard spheres v
ot 81 of the ratio 1:08 /i
¢! PIQKT xe05 /@
6
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L
4
20
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n n
Fig. 10. Compressibility factor of Fig. 11. Compressibility factor of
the equimolar hs mixture from the equimolar hs mixture from
A - v.d. Waals rule, B - Eq.(32), A - v.d. Waals rule, B.- £q (32),

C - Eq (31), D - Egs (32), (34) C - Eq (31), D - Eqs £32), {34)
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12-13 a similar comparison is given for a mixture of spheres and prolate spherocylinders,
and for a mixture of hard spheres and hard dumbells of L* = 1. Good accordance was found
in the both cases.

It is obvious that the proposed mixing rules yield very good prediction for all the
studied systems.

CONCLUSION

It has been shown how the perturbation theory of convex molecule fluids can be systematical-
1y improved while keeping its simple (analytic) form. The theory agrees well with the Monte
Carlo data on the L-J and Kihara rod-Tike fluids and their mixtures and enablesa good fit of
the coexistence curve of variety of compounds. Theoretical expressions can be easily modi-
fied to describe similar models of the interaction employing averaging-to-convex-body tech-
nique.

We have presented the equations of state of hard body systems for the different types of

hard bodies and simple mixing rules for parameters d , o« and 8_ which allow the use of the
one-component equation of state to describe the behaVioul of mi%tures. It has been shown

that the better insight into the theory avoids necessity of introducing the density-dependent
mixing rules.
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