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Abstract - Recently, we have investigated the effect of molecular association on the 
critical and phase coexistence properties of fluids with various off-centre attractive 
sites. The individual molecules are first represented by hard-sphere repulsive core6 
with square-well attractive sites, and a simple van der Waals mean-fleld term is 
also added to account for the dispersion forces. The equations can be extended 
to associating mixtures of spherical molecules with off-centre attraction sites. In 
the limit of complete bonding, chains of hard-spheres are formed. Expressions for 
mixtures of associating spherical molecules, pure hard-sphere chains and mixtures 
of chains, are reviewed. These equations are then used to study the effect of chain 
length on the phase equilibrium properties of non-associating chains. Quantitative 
comparisons of the theoretical results with experimental data are shown for the critical 
points of the n-alkane homologous series. 

INTRODUCTION 

Binary and ternary mixtures of industrial interest often include components which associate strongly. 
Because no satisfactory theory of associating mixtures has been available, engineers and physical 
chemists in industry have adopted the chemical approach to such mixtures, in which chemical reac- 
tions are postulated to account for the formation of dimers, complexes, etc. This approach is useful 
as a method of correlating data, but is very limited in value as a predictive tool. Theories which are 
soundly based in statistical mechanics offer a viable alternative and have a greater predictive value. 
Here, we present a statistical mechanical equation of state for associating fluids. Asymmetries in 
the molecular shape are taken into account by considering chain molecules. 

The effect of molecular association on the properties of fluids with highly directional attractive 
interactions, has recently been examined for systems of spherical (ref. 1) and chain-like (ref. 2) 
molecules. In the case of associating fluids of spherical molecules, two of the simplest cases were 
examined, namely, hard-sphere molecules with one or two off-centre square-well attraction sites. A 
simple and successful theory based on a resummed cluster expansion (ref. 3-6) was used to calculate 
the thermodynamic properties of these systems. The results of the theory were shown to be in good 
agreement with computer simulation data for hard-spheres with one or two sites (ref. 1). By adding 
a van der Waals attractive term, the phase equilibria of the associating fluids were then determined 
using the theory for various values of the strength and range of the bonding sites. 

Expressions for chains of hard spheres can be obtained in the limit of complete bonding. In the case 
of homonuclear chains of hard spheres, the separate effects of molecular association and chain size on 
the coexistence properties have also been investigated (ref. 2) I The hard-chain properties calculated 
from the theory are also shown to be in good agreement with existing computer simulation results. 

In this paper we review the basic expressions for mixtures of associating spherical molecules. By 
generalizing the approach to associating hard-sphere mixtures, the expressions for chains of hard 
spheres can be derived. Hence, accurate equations of state for homonuclear hard-sphere chains and 
mixtures of chains are obtained. The hard spheres making up i~ given chain in the mixture are taken 
to be the same size, but the spheres of other chains can be of a different size and the chains can be 
of a different length. 

The equations derived for the hard-chain fluids are used to study the effect of chain length on the 
critical properties of non-associating chain molecules, and comparisons are made with experimental 
data for the homologous series of the n-alkanes. The effect of the chain length on the phase equilibria 
of chain molecules is also shown. 
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THEORY 

Associating fluid mixtures 
A qualitative explanation of the approach for mixtures with single bonding sites has been given by 
Joslin et al. (ref. 7). Comparison of results from the theory and computer simulation for binary 
mixtures of equal-sized hard spheres A and B in which only AB dimers can form, were presented 
and excellent agreement was found. The expressions have subsequently been generalized to mixtures 
with multiple bonding sites (ref. 8 and ref. 2).  

The equation of state of an associating fluid mixture of molecules with multiple bonding sites can 
be written as a sum of separate contributions. For the compressibility factor we have 

where P is the pressure, T the temperature, p the total number density, and k is Boltzmann’s 
constant. Here, Zkie is the compressibility factor due to the repulsive cores, Zflp is the mean-field 
contribution to the free energy due to the dispersion forces, and Z(EA$ is the change due to bonding. 

In the case of mixtures of hard spheres, the reference term ZFx = Zfix can be obtained from the 
equation of Mansoori et al. (ref. 9 and ref. LO), 

where 

The sum in equation (3) is over all the hard-sphere components p ,  X l p )  is the mole fraction of 
component p,  and cfl is the hard-sphere diameter of spheres p .  

Z g p  of equation (1) is the mean-field contribution to the compressibility factor due to the dispersion 
forces, for which the simplest approximation is a generalized van der Waals term, 

Here, the sums are over all components in the mixture, and the constants a78 are measures of the 
strengths of the mean-field attractions between components 7 and p.  More accurate expressions for 
the mean-field term derived from perturbation theory may also be used. 

Finally, Zkf,$ is the change due t,o honding, wliicli is given hy (ref. 2) 

is the set of bonding sites on a molecule of component p,  and XApl is the fraction of component 
p not bonded at a given site A. The first sum in equation ( 5 )  is over all components p ,  and the 
second sum is over all sites in the set I’(p). The X A S  are obtained from the equation 

-1 

(6) 1 + pc c X(71X(7)A( f l7 )  D A B ]  1 

7 BEr(7)  

fLT’(12)  = ezp(-4Lfl2’(12)/kT) - 1 is the Mayer f-function of the highly anisotropic, short-ranged 
site-site attractions, and gkf7)( 12) is the reference fluid pair correlation function. The notation (12) 
represents the positions and orientations of molecules 1 and 2, and d( 12) denotes an unweighted 
average over all orientations of molecules 1 and 2 and integration over all separations of molecules 
1 and 2. 
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The properties of the associating mixture can be calculated from a knowledge of the pair distribu- 
tion function gkP7’( 12) of the repulsive reference fluid. For hard-sphere mixtures the distribution 
functions can be obtained using Perram’s method (ref. l l ) ,  with the Verlet-Weis (ref. 12) correction 
to ensure good agreement with computer simulation data. Once g g ” ( l 2 )  is available, equation (7) 
can be integrated numerically to give ALP;’, and equation (0) can then be solved iteratively for the 
fractions of sites that are not bonded at  given sites. Finally, the change in the compressibility factor 
due to bonding is obtained using equation ( 6 )  with the values of Xl’’ calculated for all the sites of 
set on each component. 

The above expressions provide a representation of the properties of associating mixtures of spherical 
or nearly spherical molecules. Reference equations for fluids composed of chains of hard spheres are 
presented in the following section in order to deal with the effect of shape as well as the effect of 
bonding. 

Chains of hard spheres 

Chains of hard spheres can be constructed by bonding together the spheres of an M-component 
hard-sphere mixture (ref, 2). The appropriate spheres are bonded together to form r chains of m l ,  
m2, . , ,, m, spheres with M = xi,, mi. We assume that only homonuclear chains are formed, i.e. 
all the spheres making up a given chain are of identical size. 

The equation of state for mixtures of homonuclear hard-sphere chains can be written as 

zf2 = Z f P  + zgz,. (8) 

Z#{E is the compressibility factor of the hard-sphere mixture which is given by equation (2) ,  and 
Zchnin, the change in the compressibility factor due to the formation of a mixture of hard-sphere 
chains. The latter is obtained as a special limiting case of equation (5) (ref. 2), 

Here, the sum is over each chain i (m; hard spheres) in the mixture. ZE2n = P / ( p k T )  is expressed 
in terms of the total number density of spheres, and p v ’  is the number density of chain i. ggi (u;i)  is 
the contact value of the pair correlation function for like-sized hard spheres in a hard-sphere mixture, 
and uii is the diameter of the hard spheres making up chain z.  For a hard-sphere mixture, g H S  ( U i i )  

is given accurately by (ref. 10 and ref. 13) 

( i i )  

where 

Since the chains are homonuclear, the sum of equation (11) has been written as a sum over chains. 
The changes in the free energy and chemical potentials due to chain formation are obtained through 
the usual thermodynamic relations. 

The expressions for mixtures of hard-sphere chains can now be used as the repulsive reference term in 
equation (l) ,  Zgiz = Zf$. In this way, associating mixtures of chain molecules can be investigated 
to determine the separate effects of association and chain size on the system’s properties. 

The equation of state for a pure fluid of homonuclear hard-sphere chains is obtained as a special 
case of equation (B), 

ZHC = z H , Q  + Zchaitt  (12) 

Z H ~  is given by the equation of Carnahan and Starling (ref. 14), 
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Fig. 1. The critical pressure, P, (MPa), as a function of carbon number for the 
homologous series of the normal alkanes. The experimental results shown as the data 
points are obtained from ref. 21, and the solid curve is obtained theoretically using 
equation (16) by fitting to the critical point of n-butune. 

Fig. 2. The critical temperature, T, (K), as a function of carbon number for the 
homologous series of the normal alkanes. The theoretical results are fitted to the 
critical point of n-butane, and are compared with experimental data. 

where the reduced density q = bp, b = m 3 / 6 ,  and u is the hard-sphere diameter. Z&&n for chains 
made up of m hard spheres is obtained from expression (9), 

and the contact value gHS(g) is determined from 

g H S  (c) = 

The hard-chain compressibility factor becomes 

the virial equation (ref. IS),  

Z H S  - 1  
4v ' 

Here, m is the number of spheres in the chain and q is the reduced density of spheres. The com- 
pressibility factors of the hard-sphere chains and chain mixtures are expressed in terms of the total 
number of spheres in the system and not the number of chains. 

Existing computer simulation data for the hard-disphere system (m = 2) (ref. 16), and for flexible 
chains made up of 4, 8 and 16 tangent hard-spheres (ref. 17) have been shown to be in good 
agreement with the results of equation (16) (refs. 2 and 18). The equation is a good representation 
of hard-chain properties even for chains of eight spheres, although its adequacy decreases as the 
chains get longer. This is because the effect of the chain's steric self-hindrance is not taken into 
account, so that structural isomers of a given chain are treated in the same way (ref. 2) .  

Equation (16) is used in the following section to calculate the phase equilibrium properties of non- 
associating fluids of chain molecules. In order to study the coexistence properties of chain molecules, 
a mean-field contribution must be added to the repulsive hard-chain reference term. The equation 
of state for such a fluid can be written as 

The hard-chain repulsive term ZHC for homonuclear chains of m hard spheres is given by equation 
(16). The simplest approximation for the mean-field contribution to the compressibility factor is a 
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Fig. 3. The critical volume, V, (cm3/mol), as a function of carbon number for the 
homologous series of the normal alkanes. The theoretical results are fitted to the 
critical point of n-butane, and are compared with experimental data. 

Fig. 4. Coexisting vapour and liquid densities, q ,  as a function of the reduced tem- 
perature, T*, for non-associating chains of hard spheres with mean-field attractive 
interactions. The curves are labelled with the number of spheres rn in the chain, and 
the locus of the critical point for different values of rn is shown by the dashed curve. 

van der Waals term, 

where the constant E M F  is a. measure of the strength of t,he mean-field forces. The reduced density 
of spheres in the chains is used to calculate the mean-field contribution. In this approximation 
to the mean-field term, we assume that each sphere in the chain contributes equally to the mean- 
field energy. Although this approach means that the intramolecular mean-field interactions between 
spheres on the same chain are included, in the thermodynamic limit (N 4 m) the mean-field 
interactions between spheres on different chains greatly out-weigh the intramolecular contribution. 

RESULTS 

For a pure fluid at coexistence, the pressure, temperature and chemical potential of the vapour 
and liquid phases must be equal, i.e. P, = PI, T, = q ,  and p, = pr. At the critical point, the 
first and second derivatives of the pressure with respect to volume are zero. When the equation of 
state for the hard-chain fluid (equation (17)) is solved numerically to satisfy these conditions, the 
critical point and coexistence curves are established for a given value of the chain size rn. In the 
phase equilibrieni calculations, it is useful to reduce the teiiiI)er;itrire with respect to the mean-field 
constant E M F ,  T' = ~ T / E M F .  The pressure is also written in terms of E M F  and the hard-sphere 
diameter u of the spheres making up the chain, i.e. P* = b P / E M p .  

We have used equation (17) to predict the critical points for the homologous series of the nor- 
mal paraffin hydrocarbons (C,HZn+Z). The carbon-carbon bond length for the n-alkanes is about 
1.5A(ref. 19), whilst the Lennard-Jones diameter for methane is of the order of 3.8 A(ref. 20). 
Hence, the carbon-carbon separation is about one-third the diameter of a methane molecule. In 
terms of the hard-chain equation, if methane is modelled as a spherical molecule with rn = 1, then 
ethane can be modelled as two interpenetrating spheres with rn = 1 + 1/3, propane will have a chain 
siee of rn = 1 + 2/3, n-butane will be represented by rn = 2 etc. In general, CnHzn+2 will have a 
corresponding chain siEe of rn = 1 + (n - 1)/3. Altliougli this is quite a crude approximation, it 
is found to give reasonable results. The assumption that trlie hard-chain equation can be used to 
interpolate the properties of systems of interpenetrating spheres still has to be examined. 

The critical points of the n-alkanes predicted using the theory are compared with experimental 
data (ref. 21) as shown in Figs. 1-3. The theoretical curves have been fitted to the critical point 
of n-butane (To = 425.14 K, P, = 3.784 MPa, and V, = 255 cm3/mol) (ref. 21). The choice of 
n-butane is arbitrary, and is due to the fact that n-butane lies in the middle of the series of the 
alkanes investigated here. In Fig. 1 we show the critical pressure P,, for the n-alkane homologous 
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series as a function of the  carbon number, n. The experimental d a t a  are shown as circles and  
the solid curve is obtained from the theory using equation (17). Although the  agreement between 
theory and experiment is reasonably good for ethane and higher homologues, the  theory does not 
accurately predict the critical point of methane. The  experimental critical pressure of methane is 
lower than t h a t  of ethane, opposing the trend of a decrease in the  critical pressure with increasing 
carbon number for the higher n-alkanes. A similar agreement is shown for critical temperature, 
T,, in Fig. 2; the  theory again fails with methane but  does reasonably well with the  higher carbon 
numbers. It is difficult to  say whether these shortcomings are due t o  the hard-chain reference term or 
the mean-field term. The  anomalous behaviour found for methane seems t o  be due to the fact t h a t  
in going from methane t o  ethane there is a much larger change in  the critdcal point thaii tAe cliaiige 
found for any other  pair of alkanes. It is ra ther  surprising, however, t h a t  the  predictions of the  
hard-chain equations for the critical volume, V,, are in very good agreement with the corresponding 
experimental values for all the  n-alkanes studied, including methane (see Fig. 3). 

Equation (17) has also been used t o  determine the phase equilibria of model fluids of chain molecules. 
The  densities, q ,  of the  coexisting vapour and liquid phases are plotted as a function of temperature, 
T', in Fig. 4. T h e  coexistence curves are shown for various values of the  chain length m. An increase 
in  chain length has  two major effects on  the  coexistence curve. Firstly, the  critical temperature, T,*, 
increases as m is increased; for the monomer sphere fluid m = 1, T,* = 0.0943287, whilst for m = 8, 
T," = 0.273016. The second effect is the decrease in the critical density with increasing chain length; 
a value of qc = 0.130444 when m = 1 decreases t o  qc = 0.0622828 when m = 8. T h e  combined 
result of these two effects is tha t  the  coexistence curves are shifted t o  higher temperatures and lower 
densities. 

CONCLUSION 

We have presented an equation of s ta te  for associating fluid mixtures with multiple bonding sites. 
Initially, associating mixtures of spherical iiiolecules were examined. The  approach was extended t o  
systems of homonuclear hard-sphere chains and mixtures of chains to deal with the  effect of rhape 
as well as association. In future work, we will used these equations t o  determine the  phase diagrams 
for binary and  ternary associating mixtures of industrial interest. T h e  equation of s ta te  for fluids of 
chain molecules was used t o  predict the  critical properties of the homologous series of the n-alkanes. 
A reasonably good agreement between theory and experiment was obtained. T h e  phase equilibria 
of model non-associating chain molecules were also determined, and were shown t o  depend critically 
on the chain length (see Fig. 4). 
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