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Abstract - On the basis of a WCA-like perturbation
theory various potentials for polyatomic molecules are dis-
cussed. These are multicenter potentials of the Lennard-Jones
and the exp-6-8 type, and also other distributions than site-
site potentials.

For mixtures, the sensitivity of excess properties to the
form of the potential and to shape effects is demonstrated.
Various combining rules are discussed for the calculation of
the potential between unlike partners from pure component
properties.

INTRODUCTION

The approach followed here is that of the perturbation theory. When
the principle correctness is assured by a comparison to computer simulation,
perturbation theory enables quicker and internally more consistent calcula-
tions than any other approach for the high density region. In this way pure
components modelled by one center Lennard-Jones molecules (1CLJ), 2CLJ, 3CLJ,
4CLJ and 6CLJ have been dealt with [1-6], and excess properties of mixtures
of 1CLJ+1CLJ, 1CLJ+2CLJ, 2CLJ+2CLJ, and 1CLJ+4CLJ type have been calculated
(7-101. on the basis of this experience a short review 1iIs given of the
merits and shortcomings of the employed WCA-like perturbation theory (for
short called the Bochum approach), and on the merits and shortcomings of the
multicenter Lennard-Jones potential model. Two directions of modifying this
potential model are discussed: (1) employing a different site-site poten-
tial, (2) using other distributions than site-site potentials in polyatomic
molecules. For mixtures, a discussion of combining rules for the calculating of the
potential between unlike partners from pure component properties follows.

THE STATISTICAL-MECHANICAL CONCEPT

The Bochum approach [1,2] is a WCA-like perturbation theory in the molecular
frame. That means that variables are the center-center distances and the
angles defining mutual orientations of the molecules. Hard fused sphere
bodies are used as reference. The pair distribution function of the repulsive
assembly 1is calculated via the Baxter method of solving the Ornstein-Zernike
equation with the Percus-Yevick closure. Therefore, the procedure is as fol-
lows:

First, the pair potential is calculated for each mutual orientation of the
two molecules,and divided the WCA way at the minimum into a branch of attrac—

tive forces u (r, w,, w,) and a branch of repulsive forces u°® T,wq 0w (where
Wy is a short notation“for the orientation of molecule 1i). Then %e angle
averages <™ /kT> and <u e U /kT> are formed. The residual Helmholtz energy
can be written
1
A¥ A% I3
NkT = (NkT)O+ 5 S <g ET> ar , (1)

where u1 and g° are dependent on the mutual orientation. The essential appro-
ximation is now
N -u®/kT
g® =9 e u/k (2)
with an angle-independent background correlation function ¢. With that, the
perturbation term of eqn. (1) becomes
e U /KT, gr (3)

(p/2) f §<(u'/kT)

1041



1042 F. KOHLER AND A. PFENNIG

The background correlation function ¥ is calculated from the spherically
symmetric potential U given by

e—ﬁ/kT _ <e—u°/kT> . (4)

Now the only problem left is to lead the Helmholtz energy of the repulsive
assembly back to the Helmholtz energy of the hard fused sphere body, which is
done by the blip condition

Ax _ A% e -u /KT -u°/kT_ ..
(ﬁiﬁ)o = (NkT)H + 5 f(<e "H >-<e >)y dr , (5)
where
B = f(<e-uH/kT> - <™ /kT>)9 dr (5a):

is called the blip integral. Assuming that the centers of the spheres of the
hard fused sphere Dbody are identical with the centers of the sites in a
multicenter site potential, the blip integral can be adjusted to zero by

fixing the proper diameter of the spheres. (A*/NkT), is then calculated from
the Boublik-Nezbeda eguation [11)]. The mean curvature of the hard fused
sphere body 1is calculated from the envelope, volume and surface of more

complicated bodies are calculated using the formulae of Lustig [12].

Before quoting the comparisons of the Bochum approach to computer simulation,
other approaches with anisotropic references should be mentioned. There 1is
the approach of Boublik and his group [13], which might be termed a perturba-
tion theory in a Kihara frame, as the variable is the shortest distance
between a pair of molecular envelopes. The reference here is a hard convex
body, and the Kihara frame pair distribution function (which cannot be traced
back to a molecular pair distribution function) is given by a semi-empirical
extension of the pair distribution function of hard spheres. Another approach
[14] uses the site-site frame (with the site-site distance as variable), and
calculates the site-site pair distribution function via RISM. For simple
linear molecules, the results of the different approaches are about equiva-
lent. Whereas the Kihara frame theory has more potential to deal approximate-
ly with more complicated molecules, the molecular frame theory has the best
potential for an extension to anisotropic molecules with electric moments. (For
almost isotropic molecules with electric moments, cf. the extensive work
of Gubbins, Stell at al. [15,161).

There exist extensive tests of the Bochum perturbation approach by computer
simulation. The first concerns the Helmholtz energy of nitrogen at about the
triple point [17] . Then the chemical potential of the 2CLJ liquid with an
elongation L = 0,63 has been compared [18% to applications of the Widom test
method [19,20] . The internal energy of 2LCJ liquids agreed very well with
computer simulations up to an elongation of L. = 0.505, but perturbation
theory gave 4% too high values at L = 0.67 and 7% too high values at L =
0.793 [21], which is ascribed to the approximation of using an angle-indepen-
dent background correlation function. Lustig [22] could receive an almost per-
fect agreement in the thermodynamic properties of 3CLJ propane, calculated
by both perturbation theory and computer simulation. Also,in the pair
correlation of 4CLJ CF, an excellent agreement was observed [6], Further compa-
risons were made by Gupta and Coon [23] for 2CLJ liquids and by Sediawan et
al. [24] for the Gaussian overlap model. The agreement was always satisfacto-
ry. In the last case the Gaussian overlap potential had to be adjusted to
make the blip width sufficiently small.

THE PAIR POTENTIAL

It is very important that the parameters of the pair potential are fitted to the
liquid state properties. A fit to the second virial coefficients, e.g., can
easily result in big errors in the liquid state properties.The reason is that
the characteristic potential parameters are less interrelated for the liquid
state properties, where the orthobaric liquid density is mainly determined by
the size parameter and the vapour pressure is mainly determined by the energy
parameter. An appropriate geometric model (the elongation of an anisotropic
molecule) is reflected in the slope of the vapour pressure curve. Most expe-
rience is accumulated for the multicenter Lennard-Jones model (nCLJ), which
has been remarkably successful in reproducing thermodynamic properties of
real liquids in spite of the known shortcomings of the Lennard-Jones poten-
tial. The shortcomings are essentially: (1) a too steep repulsion, (2) a too
shallow minimum, (3) too negative long range tail. Thermodynamic
consequences are: (1) The compressibility factor Z has the tendency to become
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too positive at high pressures and temperatures; (2) The second virial coef-
ficient becomes too positive at low temperatures; (3) The calculated charac-
teristic energy becomes about twice the ionization potential. The last state-
ment should be explained in some detail. According to London [25] , the
dispersion energy is given by
2
3 a
Ydisp - 1 ;E hv (6)

where o is the polarizability and hv a characteristic energy, which should be

about equal to the ionization potential. As for the Lennard-Jones potential,
the attractive term (given by the dispersion energy) is -2¢ (€ being the well
d?ygh) at the minimum of the pair potential, and as the minimum distance is
2 J, we have
2
3 a
e =3¢ ;E hv , (7)
so that hv can be calculated from the potential parameters and the polariza-
bility.
An attempt has been made [26] to construct a twg-parameter potential with an
exponential repulsive term and an additional r attractive term. In order to

limit the number of parameters to two, the exponent in the repulsive term and
the C /C6 ratio have been fixed so as to give good orthobaric properties to
the rage gase liquids. The resulting potential is

L) - 374887 exp(-11.2 £)-2.56314(2)8-2.56314()° (8)
Figures 1 and 2 show how this potential - for short called the Hermann (H)

potential - compares to the Lennard-Jones potential and the Barker-Fisher-
Watts potential for argon.

The improvements are shown in Figure 3 for the compressibility factor of
methane at high temperatures and pressures; in Table 2 for the second virial
coefficients of various substances (with the parameters fitted to the ortho-
baric properties of the ligquid and given in Table 1); and in Table 3 for
the ratio of the calculated characteristic energy (eqn.7) to the experimental
ionization potential.
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TABLE 1. Pair potential parameters adjusted for a fit of the orthobaric
properties of the liquid. The first line gives the reduced elongation
L = 1/0, the second gives 0/3, the third gives (e/k)/K. For substances
with L = 0, €/k is one fourth of the CLJ value.

sub- sub-
stance 2CLJ 2CH SSR-LJ stance 2CLJ 2CH SSR-LJ

Ar 0.0 0.0 0.0 Cco 0.39 0.39 0.26
3.4039  3.4003  3.4030 3.2717  3.2862  3.3845

29.425 31.193  29.434 42.282 44.612  39.657

Kr 0.0 0.0 0.0 F2 0.505 0.43. 0.29
3.6272  3.6226  3.6325 2.8317  2.9091 3.0181

41,008 43.473  40.972 53.472 51.350 45.720

CH4 0.0 0.0 0.0 C2H6 0.67 0.67 0.30
3.7310 3.7243  3.7247 3.5120 3.5208 3.9038

37.480 39.775 37.524 139.81 149.35 100.927

Xe 0.0 0.0 0.0 Cl2 0.73 0.73 0.29
3.9517 3.9475  3.9567 3.2618  3.2727 3.6921

56.933 60.348 56.867 201.31 215.45 134.428

O2 0.22 0.22 0.16 C2H4 0.74 0.74 0.30
3.2104 3.2127 3.2604 3.3268 3.3350 3.7590

38.003 39.990 37.257 137.73 147.35 92.923

N2 0.3252 0.33 0.22 Co2 0.793 0.86 0.45
3.3078 3.3256  3.4072 2.9376  2,9051 3.2308

36.673  38.61 34.537 161.83 183.93 134.45

TABLE 2. Second virial coefficients B /cm3mol-1 for various substances,
calculated with the 2CLJ, 2CH, SSR-LJ, and Kihara potential. The parame-
ters are from Table 1 or from Boublik [131.

sub-

stance T/K exp 2CLJ 2CH SSR-LJ Kihara
Ar 81 -27645 -241 -250.1
100 -183.541  ~167.4 -171.4
150 ~-82.2+1 -81.8 -82.4
300 -15.5+0.5 -14.4 -14.5
600 +12 +0.5 +12.6 +11.8
1000 +22  +1 +21.3 +20.0
CH4 110 -330 +10 -285 -293.2
150 -182 +3 -166 -168.8
200 -105 +2 -99 -99.5
300 -41 41 -41.1 -41.1
600 +8.5+1 +7.5 +6.9
N2 75 -275 +8  -257 -267 -255 -257.4
100 -160 +3  -152 -156 -152 -151.4
150 -71.5+2 -69.7 -70.8 -70.2 -68.0
200 -35.2+1 -34.9 ~35.5 -35.6 -33.1
300 -4.240.5 -4.1 -4.8 -4.9 -2.4
500 +16.9+0.5 +17.4 +16.1 +16.4 +18.9
700 +24.040.5 +25.3 +23.6 +24.3 +26.7
F2 80 -240 +40 -229 -236 -228 -231.1
100 -156 +10 -150 -153 -149 -150.0
150 -70.9 -68.7 -69.5 -69.1 -67.3
200 -37.6 -36.1 -36.8 -36.8 -34.4
250 -20 -18.7 -19.4 -19.6 -16.9
300 -9.5 -8.0 -8.8 -8.9 -6.1
CZH4 198.77 =315 -314 =327 -294 -289.3
223,22 =251 -250 -258 -237 -232.8
250 =201 +2  -200 -205 -191 -187.8
300 -138 +1 -137.4 -140.3 -134 -131.1
350 -99 +1 -97.7 -99.3 -96.8 -94.3
450 =51.7+1 -50.0 -50.8 -52.0 -49.6
C2H6 200 -410 +10 -400 ~-418 -381 -375.5
260 =243 +2  -240 =246 -232 -228.6
300 -182 +2 -180 -184 -176 -173.0
400 ~96.0+1 -96.3 -97.6 -96.0 -93.2

600 -24.5+0.5 -25.3 -25.9 -27.7 ~25.0
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TABLE 3. The ratio of the characteristic energy to the experimental ioni-
zation potential, hv/I, for various potential models. The parameters
are from TAble 1 or from Boublik [13].

substance 2CLJ 2CH SSR-LJ  Kihara substance 2CLJ 2CH SSR-LJ Kihara
Ar 2.01 1.36 2.01 2.01 N 1.87 1.30 2.10 1,23
Kr 1.98 1.34 1.98 1.98 Ca 1.79 1.24 2.06 1.07
CH4 2.19 1.47 2.19 2.19 CZH6 2.10 1.46 2.86 1.34
Xe 2,03 1.38 2.03 2.03 C H4 1.80 1.25 2.53 1.28
O2 2.48 1.68 2.67 1.40 Caz 1.96 1.35 2.90 0.82

Another question concerns the pair potential of polyatomic mole-
cules. At present, there are three different suggestions. The most anisotro-
pic choice is the Kihara potential, then comes the site-site potential, and
the least anisotropic is Lucas' SSR-MPA potential [27], where only the re-
pulsive term is distributed to the sites, whereas the attractive term origi-
nates from the molecular center. We will make a systematic comparison on the
basis .of the Lennard-Jones potential acting either between the nearest molecular
distances, or between the sites, or with the attractive term between molecular
centers. The anisotropy of the dispersion energy, taken into account by Lucas
[27], is neglected here.This simplified potential should be called SSR-LJ. As
for this potential no parameters are available which are fitted to the ortho-
baric properties of the liquid, we have determined them on the basis of our
perturbation theory with a hard dumbbell reference. These parameters are
compared in Table 1 to the 2CLJ-parameters. It is seen that the elongations
are systematically smaller, which is compensated by a bigger size parameter
0. Figure 4 shows for ethane the potential behaviour for four significant
orientations, with the parameters from Table 1 or from Boublik [13], resp..
Figure 5 compares the center-center pair distribution function for the three

potentials.

Ancther significant difference 1i1s the ratio of characteristic energy to
ionization potential, which is more or less constant for 2CLJ, increases
with elongation for SSR-LJ, but decreases with elongation for the Kihara
potential. These numbers are given in Table 3. The second virial coeffi-

cients, calculated with the potential parameters from the liquid phase proper-
ties, are added in Table 2. It seems premature to draw definite conclusions
from these comparisons, but at present it can be said that the nCLJ-
(or nCH-) potential offers a very reasonable model.
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EXTENSION TO MIXTURES

The straightforward extension of egn. (1), (3), (5) to mixtures yields
_Ax _A* b : -u®_/kT
(NKT)mi = (NkT)o,mi +7 3 xixjf yij<(uij/kT)e ij >dr (9)
and
A% _ (_A* 3
Flo,mi = TkTlH,mi * Zizjxixj B 5 (10)

where the x, are mole fractions of component i.
The evaluation of ¢.. via Baxter's method has been done in an approximate way

by Perram [28] and id a refined version by Fischer and Lago L[7]. The ques-
tion remains how to deal with the sum of the blip integrals in egn. (10).
Fischer and Lago retained the condition for the pure components B.. = 0 and
B‘j = 0, and evaluated the term with Bij as a correction term, whereby
H
<e_uij/kT> was given by the condition of additivity of sphere diameters
dij = (dii + djj)/Z (11)

Later, following a suggestion by Perram, Bohn et al. [8] used

X, B11 + X, B12 =0

X, By, + X, B, =0 (12)
together with egn. (11) for determining d4d,., d1 , and d2 in the mixture.
This way d.. became slightly dependent on comp%sition. %owever, compari-

son with comﬁﬁter simulaiton showed the advantage of this procedure. Re-
cently, Shukla [29] has used the same conditions.

Again, several comparisons to computer simulation have been made. First, it
was possible [30] to reproduce the extensive Monte Carlo calculations of
Singer and Singer [31] on model mixtures of spherical molecules. Then, Haile
[32] has compared g for repulsive soft spheres and Coon et al. [33] have
compared excess properties for 1CLJ+2CLJ mixtures. Finally, Lotfi and Fischer
[34] have calculated Henry constants for mixtures of spherical molecules by the
perturbation theory and by computer simulation. Even in these extreme cases
the agreement was very satisfactory.

Two questions should be answered now on the basis of the perturbation
theory. First, how sensitive are the excess properties of mixtures of spheri-
cal molecules on the pair potential used? Second, how important are shape
effects for excess properties?

In dealing with these questions, the model mixtures of Singer and Singer {31]
are used as the start. That means that the calculations are for zero

pressure, for T = 27 K, for e 2/k=133.5 K, and for 612 = 3.596 A.
Assuming the Lorentz—Berthelo% conditions, i.e.
. 512=\/e11 €5,y (13a)
an -
G4y = (c11 + 022)/2 s (13b)
the excess properties will be calculated as a function of the energy ratio
= - 1
6 (ezz/z-:12 1)45127922 (14)

and size ratio
o= 022/012 -1 . (15)
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T ™ LI TABLE 4. The increment in excess Gibbs energy,
3 - )
vE =012 gE/J mol 1, when molecule 2 is elongated from
L =0 tolL =0.793. The model mixture is that
of Singer and Singer

(p =0, T=097K, e,/k=133.5K, 0,, = 3.5% &).
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0 -138 -28 +86
+0.211 -115 -6 +102

-200

g Fig.6. The excess properties for
the Singer and Singer model mix-
tures for 1CLJ and 1CH potentials.
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Figure 6 shows this behaviour for mixtures of 1CLJ molecules (dashed) and 1CH
molecules (full). The differences are small, except for extreme cases of 6.
The H-~poteptial is much more softly repulsive, which resultﬁ in slightly more
negative v~ values, and in turn in slightly less positive g~ and h~ values.

In order to answer the second question, we first model molecule 1
and molecule 2 as 1CLJ (with the parameters fitted to vapour pressure and
orthobaric density). Then we elongate molecule 2 {(again with 2CLJ—p€rameters
which satisfy vapour pressure and density). The difference in g, which
results from this elongation, is given in Table 4 as a function of the 1CLJ
energy and size ratios. E
It 1is seen that the elongation leads to a negative increment in ¢~ , when we
start from equally sized spheres, 1i.e. when © becomes smaller than o in
the elongation process. But when we start frofia small sphere 1 and a Dbig
sphere 2 (u big), then the elongation process leads to more equally sized 011

and o 2 and the increment in gE becomes positive.,
The 5ashed lines of Figure 6 and Table 4 are part of our general correlation
formulae for the excess properties of 1CLJ+2CLJ mixtures [9].

COMBINING RULES

It 1is a crucial problem in the treatment of mixtures to assign the unlike
interaction parameters ¢ 2 and o¢,,, 1in other words, to determine the small
deviations from the Loréntz—Ber%ﬁelot rule, characterized by the parameters
£ and n:

N
12 =%E L 5 (16a)
012= n(o11 + 022)/2 (16b)

For the long range tail of the potentials, the use of the simplified London
formulae for the dispersion energy f35 1 is now well established, with the
characteristic energies calculated via egn. (7). This leads to

6
12 %2 = (3/8) ey Ay, hv,/(hv, + hvy)) a7
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For n,CLJ + n,CLJ mixtures the factor n,n, has to be added on the left hand

side. If 9, %s assumed to be the arith%e%ic mean (i.e. n = 1), this leads
to
—_— 6 —
€ - Vo171 9 Vhv, by, (18)
(011+022)/2 (hv1+hv2)/2

That means, & is given by the ratio of the geometric to arithmetic mean of the
o's to the sixth power times this ratio for the hv's to the first power. It
is, therefore, very important to have reliable ¢ and hv values for making
predictions of the unlike interaction. As it has been shown, this depends
very much on choosing the correct molecular model.

The assumption " = 1, on which eqn. (18) is based, has been termed later [8]
the o0ld method of Kohler (KO). It is quite a difficult problem to arrive at
better values. Kohler et al. [36] thought that it is the effective hard

diameter, which is responsible for the regpulsive forces, and assumed additi-
vity for it. In order to have a simpler relation than the blip, they used the
BH1 prescription [37], which can be formulated generally for nCLJ as

F(<e B %Ts | e Uo/KToyar = 0 (19)

—uH/kT

where <e > depends on the hard diameter 4. The new relation

d12 = (d11 + d22)/2 (20)

requires an 1iterative solution, which is easily obtained. Note that the
integrand in eqn. (19) differs from the integrand in the blip (eqn. 5a) only

by the factor yr?, so that the new procedure comes very near to choosing a
012,which leads together with conditions (12) to zero blips B,, = B11 =B =
0.7It gives mostly n values slightly larger than unity. It haS8 been teg%ed
(8] the new method of Kohler (KN), or the new extended method (KNE), when
applied to multicenter Lennard-Jones mixtures.

Recently [27], another method for determining n has been recommen-

ded, which goes back to the work of Smith [38] and Kong [39]. Their princi-
pal assumption can be rewritten as

re re re
@Quis®, o (@uIf?,  _ (auzsP, (21)
dr r1+r2 dr 2r1 dr 2r2 !

which means that the repulsive force exerted by one molecule for a certain
deformation is independent of the nature of the colliding molecule. Though
one might gquestion this assumption, the main drawback in the further treat-
ment was the insertion of the r_12 part of the LJ-potential in u"®P,  This
leads immediately to

12 12,1/13 12,1/13 13
€1591% 11) + (522022) 1/2}

which together with eqn. (17) gives ¢ and G4, OF £ and n (this combination
might be termed Kohler-Smith-Kong (KS&%.

‘ The repulsivg1gotential which is thought to be responsible for the
structure is not the r part of the LJ-potential, but that part originating
from the WCA-division of the potential, i.e.

= {[(e11c , (22)

WP 2 ge (D) - (D)% 4 e r <28, (23)

However, for this potential the condition (21) does not lead to a simple
formula like egn. (22), but gives n values depending on the assumed colliding
distance r,+r,. For colliding distances slightly smaller than o the n va-
lues are o% tge same order as with the KN rule. 12

The inconsistency in the repulsive potential used in the KSK rule with that
used in the statistical mechanical concept would eliminate the KSK rule if it
would not give sometimes relatively good results. For this reason we will
discuss it further. It seems to be a fact that the KO or KN rule has a
tendency _?9 produce somewhat high £ values. The use of the very softly re-
pulsive r term of the LJ-potential in the Smith-Kong treatment leads to a
relatively big n value, which in turn brings the £ value down. However, when
an independent check on £ and n is possible, the general finding is that the
KSK £ is quite good but the KSK n is too large. This is illustrated in Figure
7 for the example of the Kr+Xe mixture, which showszhatEpairs of £ and n
would be deEanded Eo reproduce the excess propertieg v, g , and h™. It is
seen that h™ and g~ determine essentially &, but v~ is also very strongly



n-dependent. In that example,
whereas the KN-rule is on the high side.

definitely too large.

the KSK-rule gives a slightly

There 1is another difficulty with the KSK rule for

mixtures. For very small elongations,
the 1LCJ+1CLJ mixture, egn. (22).

12 _ 2
n,n,e,0 12 = {{(n

15119
This we will call KSKI. For large elongations,
“"see" each other, formvla (22) should be retained,

Ther it should be written

12)1/13
i

(n?

2%22 22

Y233

n,CLJ
the rule should gc¢ continucusly ove
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calculated by KNE, KSKI,

and KSKII.

+

But the n value produced by KSK is
n,CLJ
% to

(24)
sites

and o, .
Tablel$

TABLE 5. Comparison of experimental and predicted excess

properties gE/J mol

-1

, hE/J mol

-1

, and VE/cmBmc»l_1

of
1CLJ+2CLJ and 2CLJ+2CLJ mixtures.
oxp KNE KSKT KSKIT

Ar + 0, o 37 10 -1.6 82
84 K 60 16 -1 121

v 0.14 0.01 -0.03 0.30
Ar + N, o 34 35 30 82
84 K 51 34 27 112

v 20.18 Z0.15 -0.18 0.11
Ar + @ o 57 43 46 99
84 K 9% 53 59 146

v 0.09 20.02 0.01 0.28
CHy + N, gg 170 106 97 253
91 K 138 57 44 297

v 20.54 Z0.57 -0.63 0.20
Ker Gy f 240 136 146 212
116 K 315 154 144 239

v 0.21 -0.13 -0.17 0.01
ke + Gfy & 145 108 14 275
161 K 185 131 14 399

v 0.35 0.07 -0.27 0.63
Ar + Cyfig gg 317 191 422 272
91 K 239 127 439 232

v 20.38 Z0.75 Z0.17 -0.54
Ko+ CHls oF 80 26 79 56
116 K 49 14 65 33

v -0.22 -0.34 -0.20 20.26
CHy+CoHg gg 121 109 125 141
104 X 74 59 85 106

v -0.45 0.59 -0.54 20.50
Xe+ Cfls  of 29 3 -91 92
161 K -52 -19 ~172 109

v Z0.12 -0.10 -0.41 0.18
o +N of 40 55 57 81
78 X he 60 59 62 100

v -0.25 ~0.21 20.20 20.09
Ny + @ ot 23 8 14 53
84 K - 11 23 91

v 0.13 0.01 0.05 0.32
CR  of 99 69 109 113
161 K 193 100 162 169

v 0.16 0.10 0.23 0.25
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We believe that inspite of scme shortcemings the KNE rule should be
preferred, and that the incecnsistency inherent in the KSK rule masks some
approximations of the models, which could be easier seen and eventually
remedied otherwise.
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