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Abstract - The thermodynemics of solid surfaces is the least

developed part of the surface thermodynamics. The Gibbs ad~
sorption equation referred only to fluid systems, and en
enalogous equation for deformable solids was derived consi=-
derably later. Its general interpretation is complemented
now by the concept of the tensorial anisotropie chemical po-
tential corresponding to an anisotropic deformation stete in
& solid. Surface stresses produce the mechanical surface ten-
gion of which the direct meesurement was & great problem up
to now. The first method of measuring surface tension of so-
lids has been proposed very recently and is based on the ef-
fect of deformation on solubility.

INTRODUCTION

The foundation of the thermodynemics of solid surfaces was elaboreted by
Gibbe (ref.1). His distinction of the work of formation of & unit surface,

, from surface tension, ¥ , was an unexpected and important point of
the theory determining the thought procession in the sequel. At the same
time, the central statement of the theory of capillarity, the adsorption
equation, was formulated by Gibbs only for fluid surfaces. Application to
solids was considered by Banghem (ref.2). A generaslization of the Gibbs
adsorption equation for deformeble solids was made considerably later:
first by Eriksson for mechenically isotropic states (ref.3) and then by the
author for a general anisotropic case, expressing the adsorption equation
both through & and through ¥ (ref.4). The step that took a century need-
ed the understanding of two things: & tensorial character of chemical po-
tentials in solids (essentially, it was pointed out by Gibbs, but seemed to
be unthinkable since mass could not be a tensor) and thet fact that the dif-
ference between & and ¥ weas due to the nonuniformity in chemical potenti-
als at the surface of an even equilibrium solid. Both the points will be
discussed in this communication.

In addition, of interest is a discussion (initiated in ref.,5) of & practical
role of & and ¥ in verious phenomens &and of their measurement methods.
‘The most known are theoretical estimetions for comparisonbetween & sand ¥
(e.g., ref.6)., Ags for experiment, the situation seems to be better with
quantity @ which participetes in the Yung equation, and worse with quanti-
ty ¥ for which, practicelly, there is no reliable data, Gokhshtein propos-
ed a method for measuring varietion in ¥ (ref.7) and & method of a direct
meagurement of quantity & itself has been elsborated very recently (ref.8).
Since this method has & thermodynamic foundation, it is also worthy to be
described here,

THE MODEL OF ACOMPLETELY ELASTIC BODY AND ANISOTROPY OF
CHEMICAL POTENTIAL

The model of & completely elastic body is characterized by the presence of
at least one immobile component forming an ideal (without defects) crystal-
line lattice. The lattice is capable of elastic deformetion, but every gi-
ven lattice site is occupied by g certain perticle, so that diffusion of &an
immobile component is excluded, Maxwellien viscosi%y in such & model is in-
finite (if the elasticity modulus were also infinite, we would have the mo-
del of a completely rigid solid which is often used in the thermodynamics
of wetting). Besides immobile components, the system mey contein also mo-
bile ones moving freely through the whole volume of the lattice, but their
presence is not necessary.

The model of & completely elastic solid ig & strictly equilibrium model to
which the equations of equilibrium thermodynemics should be applicable.
However, a difficulty arises with the definition of chemical potential of
an immobile component (if & body is uniform in composition, it is suffici-
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ent to consider only one immobile component (ref.1, p.194)). Chemical po-
tential M. is defined usually as the derivative of energy U with respect
to the amoant of component j , nj, et constant entropy S, constant volume

V of the system, and constant amounts ny of other components (mobile ones)
if they are present:

P"j = ( 20U/ and)s’v’ni (1)

In the case of en anisotropic body, the condition of constant volume should
be understood as the condition of fixed boundaries of the system, but the
difficulty is that the derivetive expressed in (1) becomes dependent of =a
finite state of deformation after a change in amount n4. In other words,
the energy of & solid in a given volume depends not only on mass, but also
on the way of changing mass.

Recognizing this difficulty, Gibbs gave up introducing c@pmical potential
for & solid and used only ordinary chemical potential ', of en immobile

component in & dissolved state (when we gpeak "immobile" we mean the beha-
vior of component J in a so0lid, but component ] is capable of dissolu-
tion and behaves in & liquid phase as an ordinary component of solition)
when & liquid solution is in equilibrium with & solid. Since pressure in a
liquid is isotropic, such an equilibrium is possible only for three lattice
planes in the solid perpendicular to the principal directionsof the pres-
sure tensor. Gibbs derived the equilibrium conditions for these directions
(ref.1, p.194,217).

(u, - Ts, +pg = 25 My €/ 9= :“'t-;(k) (k=1,2,3) (2)

where ¢ is molecular number density, u, energy density, s, entropy densi-
/

ty, Py principal values of the pressure tensor, pbj(k) equilibrium values

of chemiceal potential of the immobile component in a liquid. The left~hand
side of eq.(2) refers to & solid, the right-hand side refers to a liquid
phase, 80 eq.(2) is the condition of phase equilibrium. A more genersl con-
dition of equilibrium for an arbitrary plane mey be derived by changing a
liquid phease for a hypothetical solid phase where component  behaves as

a mobile one (ref.4):

(uy - Tsy+p, =Z My 030/ £y= My (3)

-
where p, is pressure in direction v , perpendicular to the plane under
congideration, f‘B( v ) corresponding value of chemical potential.

We return now to eq.(1) and answer the question: ig it possible for a gi-
ven solid to define & multitude of values of chemical potential related to
different weys of introducing amount dns into the gystem? There are the
corresponding attempts in the literature (e.g., ref.8-11), Let us imagine
that every differential of mass is characterized not only by its value,
but also by ite direction, If we add to & solid the amount of its matter
dnj(.v ) along the direg}ion of unit vector 37 , it means that the solid

contracts in direction ¥V and the empty volume formed is filled up with
dnj( Y )e Contrection in direction ¥ may be represented as the simulta-

neous corresponding contractions in direction x,y and z, so that three
quantities dnj(x)’ dnj(y)’ and dnj(z) will completely determine dnj( Y )
Consequently, a directed change in esmount n, mey be generally characterized

by tensor dn. Respectively, chemical potential M ., » for a given direc-
tion is defined as the derivative of energy with Jrespgct to amount n‘,j
along the same direction:
!lbj( v ) = (2U/ anj( N ))S,V,ni R (4)
and the set of F“j( V) mekes the chemical potential tensor }Lj of & solid.

The fundamentel equetion for the energy of & uniform body may be written
now in the form

QU = TaS ~ (p : d8)V + }23 : dz’ij + Z fegdng (5)
1

where T is tempergture, 3 the pressure tensor, @ the strain tensor. For &
given direction ¥ , eq.(5) becomes

AU = TdS - p , AdL,, + /uj(v)dnj( vyt Z; e dng (6)

where A is the constant along ;: crosg-gection aree of the body, L, its
dimension in direction » . After integration at constent intensive vari-
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ables, we get from (6) the integral expression

U=1 -p V+ f"';](v)nj+zj_ 124 (7
or, in density terms,
%=Tsv-pv+’4’3()’)§j+ziﬂiei (8)

Comparing now (3) and (8), we obtain the phase equilibrium condition in
the usual form

Moy = Faev) (9)

which confirms the mesning of quantity pLj( ) a8 chemical potential.
Equation (8) may be written in the form

~

Wy= P, F i) Sy (10)

where (o o 18 the density of grand (with respect to mobile components)

thermodynamic potential .£L (the free energy density in the absence of
mobile components). Since the left-hand side of (10) does not depend on
the direction, the combination of quantities on the right-hand side ghould
be invarient with respect to direction.

DIFFERENCE OF QUANTITIES O AND 7

Up to now we discussed bulk properties of a solid, but the above concept
of chemical potential is very important for understanding surface phenome-
na., Condition (9) means thet chemical potentials of an immobile component
in liquid and solid phases are equal only at the surface of contact of the
phases and does not mean that chemical potential is the same in different
point of & solid. Just the reverse, chemical potential of a solid is un-
able to become uniform due to the absence of diffusion of an immobile com-
ponent, so the nonuniformity of chemical potential may take place even in
a truly equilibrium state of & completely elestic body. In particuler, such
nonuniformity exists always near the surface, which should be taken into
account in calculations of excess quantities.

We consider this problem using eq.(10) es an exemple and passing to excess
quantities for a flat dividing surfece (perpendiculer to the z-axis). The
excess of the left-hend side of (10) does not depend on direction and
yields the known quantity & (excess free energy in the case of absence of
mobile components):

. ~ 7
6 =(w, -, P8 az (11)
Superscript « refers to the bulk of & solid, g refers to an adjacent

phase, symbol «, 3 meens o for z < z, and B for z > z, where 2z, is the

coordinate of the dividing surface. The excess of - p, , dependent of di-
rection » which now should be parallel to the surface (this follows from
the fact that integration of (6) is carried out along the direction of uni-
formity, i.e. in any direction to the dividing surface if we deal with the
surface layer), is the excess surface stress

«, £
v,=~- § o, -0, a (12)
The excess of quantity ij( ») (3 3 may be represented as

o, B < G o~
S Craoy §5- iy 835 e pyy
B B o, p
Moy Tyt S(I‘"j(v)' Fscvy ) £ (13)
where I' . is the ebsolute edsorption of an immobile component on the

side of phase x, g . Thus, we obtain from (10) the relationship for ex-~
cess quantities

o« & B B o, 3
& = k’v+ f"';j(v)I‘j+/“j(v yr g S( f«_j(‘,)-/&j(,, )) £ 3 dz (14)
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= i
If chemical potentials f‘j( y ) end r&j( v ) in the edjacent phases ot and
B ere the ssme, or phase f is & vecuum or a gas, eq.(14) takes the form

by d q
@ =¥ * Myv) I+ S( Macw oy M) §5 82 (15)
where T is the total adsorption of an immobile component. Eq.(15) is
gimplified if the dividing surface is chosed from condition T i = Os

ol
S = ¥+ Sy - ki) gy (1e)

In this case, quantity & 1is the seame &s in Gibbs' theory. Gibbs emphagiz-

ed & difference between quantities & and ¥ which exists only for solids,

and eq.(16) gives & good explenation: abgence of migration of an immobile

component in a completely elastic solid (slowness of diffusion in & real

solid) leads to nonuniformity in chemical potential esnd, as & consequence,

io iggquality of @ and ¥ , which never tekes place for an equilibrium
iquid,

MEASUREMENT OF Yy

It is known from the theory of elasticity thet the free energy of an eles-
tic body increases both during contraction and expension if there is no
stress in an initisl state. In particular, free energy density must be the
seme on two sides of & bent elastic plate. In Gibbs' theory, the free ener-
gy density of & solid is uniquely related to chemical potentiel, so one may
say that chemical potential on the opposite sides of the plate would be the
same 1f there were no stress in an initial state. Actually such a stress
exists: this is surface tension of a solid. Symmetry disappears in the case
of a bent plate due to surface tension. Strain, free energy density, and
chemical potential will be higher on the convex side than on the concave
one 1if surface tension is positive, and lower on the convex side if surface
tension is negetive. The difference in chemicel potential on two sides of

& plate can be measured, for example, from the rate of dissolution of the
sides or, directly, from the equilibrium concentrations of their satureted
solutions.

It was established from experiments with plates of potassium chloride in
water (ref.7) that the chemical potential of potassium chloride is higher

on the concave side. This meens that surface tension of potassium chloride

is negative (the existence of a negative tension was predicted in some theo-
retical estimations (ref. 6,9). The value of the excess tangential pressure
pp in the surface layer of a solid may be calculated from the formula (ref.8).

Pp = - PAK/2(1 = V) eq a7

where ¢ is density of the solid, AM difference in the chemical potential
of potassium chloride on the convex and concave plate sides, Y Poisson's
coefficient, en tangential strain. One can pass from Pp to surface tension

Y by means of relationship ¥ = - pT‘t where T is the thickness of

the surfece layer being in eguilibrium with the adjacent solution, The
value obtained was pp =~ 4-107 Pa (ref.7), end if we set T .= 3:10-10 m (the

thickness of e monolayer of ions), we have Y= . 0,12 mN/m for the surface
layer of potassium chloride in contect with the aqueous solution.
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