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Abstract: An ever-increasing number of examples in the literatun? attest to the fact 
that photochemical reactions carried out in optically active crystalline media can lead 
to enantioineridly enriched products in high optical yields. Taken from our own 
work and that of others, this article examines the relatively few examples of such 
reactions in which the absolute stereochemical arrangements of the molecules in the 
reactant crystals are correlated with the absolute configurations of the optically active 
products formed by irradiation of the same crystals. Studies of this type provide 
penetrating insights into the mechanisms of the reactions in question, and in addition, 
help to pinpoint the crystal latticederived stereoelectronic factors that arc responsible 
for tbe observed enantioselectivities. 

INTRODUCTION 

In isotropic media, photochemical reactions that transform achiral reactants into chiral products lead to 
racemic mixtures. When such reactions are conducted in optically active media, however, the previously 
enantiomeric transition states become diastereomencally related owing to theii interaction with the 
medium. These transition states will, in general, have unequal energies, the result being that the 
formation of one photoproduct enantiomer will be favored kinetically over the other. In other words, an 
asymmetric induction will occur. In media where the interaction with the reactant is relatively weak and 
transitory, as in the case of optically active solvents, photoproduct enantiomeric excesses tend to be low 
(ref. 1). On the other hand, it is now well established that when photoreactions of this type are 
conducted in optically active crystalline media, where the intermolecular forces arc stronger and much 
more highly organized, the extent of asymmetric induction can be quite high (ref. 2). 

It is beyond the scope of the present article to review all cases of solid state asymmetric induction. 
Instead, we concentrate here on the few published examples of reactions of this type in which the 
absolute structure of the reactants is correlated with the absolute configuration of the optically active 
products. Whether in solution (for example, the S,2 reaction) or in the crystalline state (as in the present 
instance), such studies represent one of the most powerful methods at the disposal of the organic chemist 
for elucidating reaction mechanisms. In addition, for reactions in the solid state, absolute configuration 
correlations tell us a great deal about the crystal lattice forces that govern excited state 
behaviorinformation that can be used to advantage in designing new crystalline materials to fulfill 
specific functions in chemistry and materials science, that is, in the burgeoning field of “crystal 
engineering.” 

ABSOLUTE CONFIGURATION CORRELATIONS 

Photoadd ition Reactions between Ketones a nd Deoxvc holic Acid 

One of the first applications of the absolute configuration correlation method to an enantioselective 
photochemical reaction in the crystalline state was can-ied out in 1980 by Lahav, Leiserowitz et al. (ref. 
3). These authors reported that acetophenone forms a 2:5 crystalline channel inclusion complex with 
deoxycholic acid (1) as the host, and that irradiation of the complex in the solid state leads to abstraction 
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by the acetophenone of a hydrogen atom from C5 of the steroid followed by coupling of the resulting 
radical pair to produce photoadduct 2 (Scheme 1). Because the crystals retained their singularity 
throughout the photolysis, (a so-called single crystal-to-single crystal or topotactic transformation), the 
course of the reaction (including intermediate stages) could be followed by X-ray crystallography. In 
this case, the crystals are optically active by virtue of the optical activity of the deoxycholic acid, and 
since the absolute configuration of this compound is known, the crystal structures establish the absolute 
orientation of the reacting deoxycholic acid-acetophenone pair as well as the absolute configuration of 
the newly formed stereogenic center in photoproduct 2, which is (S). 

inclision complex 
2 

C 
The absolute configuration correlation revealed a surprising result, namely that photoproduct 2 has a 
configuration opposite to that expected on the basis of the host-guest packing at the reaction site 
(structure A, Scheme 1). This finding means that there had to have been a net 180" rotation of the acetyl 
group at some point along the reaction coordinate, and the authors suggested that this motion is initiated 
by the need for the oxygen n-orbital to rotate into position to abstract H5 of the steroid (structure B). 
Following abstraction (structure 0, the odd electron-containing orbital at C5 is closer to the top lobe of 
the p-orbital on what was originally the carbonyl carbon, and radical coupling thus results in an overall 
inversion of configuration at this center (structure D) relative to the original arrangement in structure A. 
Allowing for minor adjustments in the positions of the neighboring steroid molecules, atom-atom 
potential energy calculations revealed that the postulated 180" rotation can in fact take place without 
incurring prohibitive intermolecular contacts within the crystal lattice. 

Similar photochemical and crystallographic studies were can-ied out on the complexes of deoxycholic 
acid with p-fluoroacetophenone and propiophenone (ref. 3). p-Fluoroacetophenone was found to behave 
similarly to acetophenone, but in the case of propiophenone, different results were obtained. Here, in 
spite of a packing arrangement in the crystal similar to that found for acetophenone, both diastereomeric 
photoaddition products at C5 were obtained in an unspecified ratio, one having the (S) absolute 
coafiguration at the newly created stereogenic center and the other (R). The authors rationalized these 
results on the basis of the relative size of ethyl versus methyl, suggesting that the larger ethyl group 
experiences more resistance from the crystalline medium to the 180' rotation required for formation of 
the (S) photoproduct, thus allowing formation of the (R) product to compete. 
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The Di I I  nklethaw Photorearran?-t of DiisQDropvl 9.10 -Dihvdro I .  9 10 I e-ene- 
uJ2-Dic- 

.. 

In this section we discuss work from our own laboratory on diisopropyl 9,10-dihydro-9,10- 
ethenoanthracene-l1,12-dicarboxylate (3, Scheme 2) (ref. 4). This compound, which has average C, 
symmetry in solution, adopts a chiral conformation in the solid state and crystallizes in the chiral space 
group P2,2,2,. Crystals that have chiral space groups are characterized as being enantiomorphous, that is, 
they exist in “right-handed” and “left-handed” forms that may or may not be visually distinguishable. 
Crystals grown from optically active materials (such as the deoxycholic acid-ketone complexes) will be 
either all right-handed or all left-handed depending on which enantiomer of the chiral component is 
employed. In the case of chiral crystals grown from achiral substances, however, it is not uncommon to 
find both enantiomorphs present in a given batch of crystals from the same recrystallization. In order to 
ensure that one is working with an “optically pure” crystal, therefore, an X-ray quality single crystal 
should be chosen. Alternatively, polycrystalline samples of the same handedness may be prepared by 
seeding techniques using seeds obtained by crushing single crystals. 

Irradiation of a single crystal of diester 3 led to compound 4 as the sole product, an example of the well 
known di-a-methane rearrangement reaction (ref. 5). Photoproduct 4 is chiral, and when its optical 
purity was determined, it proved to be nearly optically pure (> 95% enantiomeric excess). The process 
was shown to be fully enantioselective, since photolysis of one enantiomorphous single crystal led to one 
enantiomer of 4, while irradiation of the opposite enantiomorph led to the other. Reactions such as this, 
in which an achiral reactant is transformed into an enantiomerically enriched product without the 
external intervention of prc-existing optical activity, have been termed ubsolure asymmtric syntheses. 
This is a somewhat confusing use of the adjective absolute, since this term is more commonly used in 
stereochemistry to refer to absolute configuration, which is the sense in which we shall be using it in this 
article. 
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The commonly accepted mechanism (ref. 5 )  for the di-x-methane rearrangement as applied to diester 3 is 
shown in Scheme 2. In solution, owing to the C,, symmetry of 3, there are three other equally probable 
mechanisms (not shown), each involving a different initial benzo-vinyl bridging step, for a total 
mechanistic degeneracy of four. By following each of the four possible mechanisms to completion, it 
will be seen that those adhering to paths I and I1 lead to one enantiomer of photoproduct 4 (S,S,S,S), 
whereas pathways 111 and IV lead to the other (R,R,R,R). The results of photolyzing 3 in the solid state 
establish that thm is nearly complete (I + II) vs (III + IV) discrimination in this medium, but they do not 
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differentiate between the two possibilities, and it was to solve this problem that we turned to the absolute 
configuration correlation studies. 

Because the photoreaction of diester 3 is not single crystal-to-single crystal in nature, it was necessary to 
carry out the absolute configuration correlation in several steps. The first step was to divide a large 
single crystal of diester 3 into two fragments. One fragment was subjected to anomalous dispersion X- 
ray crystallography (Bijvoet method, ref. 6). As mentioned above, diester 3 adopts a chiral conformation 
in the solid state, and one way of denoting its absolute configuration is by specifying the sign of the 
dihedral angle between the carbonyl carbons of the ester groups and the bridging double bond (dihedral 
angle a-b-c-d, Scheme 2). This angle is non-zero owing to steric interference between the bulky ester 
groups, and in the crystal fragment chosen, its value was +So. At the same time, the second crystal 
fragment was photolyzed and the resulting optically active product 4 recrystallized and subjected once 
again to Bijvoet analysis. This showed that the photoproduct had the all-(S) absolute configuration. 
Scheme 2 depicts the correct absolute configurations for both reactant and photoproduct as deduced 
crystallographically. 

These results establish unambiguously that the solid state photoreaction of diester 3 proceeds through 
pathways I and/or 11, since paths III and/or IV would have given the all (R) enantiomer of 4. The 
question then arises, why are pathways I and/or I1 favored over I11 and/or IV? There appear to be two 
reasonable answers to this question. First, because of the positive dihedral angle a-b-c-d, the orbital at 
position c is tilted toward benzo position w, and the orbital at b. is tilted toward y. In other words, there is 
better orbital overlap for benzo-vinyl bridging of type I and I1 than for t y p  I11 and IV. This is depicted 
in structure 5, Scheme 2. Secondly, pathways I and I1 lead to a diminution of the steric interaction 
between the bulky ester groups. In the alternative pathways leading to the unobserved enantiomer, the 
ester substituents would be driven toward each other during benzo-vinyl bridging. As we shall see, 
similar arguments successfully account for the absolute steric courses of several other solid state di-x- 
methane photorearrangements. 

A final point concerns the interesting question of whether it is possible, with the data in hand, to 
determine the relative importance of paths I and 11. While the absolute configuration correlations do not 
help in this regard, the packing diagram for diester 3 indicates that the ester substituent d, which is 
attached to the vinyl carbon involved in path I, is in a much more congested steric environment than its 
path I1 counterpart. Because the ester substituent attached to the reactive site is required to move most 
during the initial stages of the rearrangement, there is a clear prediction of a preference for path 11. This 
qualitative conclusion was borne out quantitatively by atom-atom potential energy calculations similar to 
those mentioned above, which simulate the steric interactions developed between the reactant and its 
lattice neighbors during the early stages of rearrangement. 

The Photochem istrv of Inc lusion ComD lexes of 9. 10-Dihvdro-9.10-ethenoanthracene -11.12- 
Dhine oxide) 

Because Bijvoet absolute configuration assignments for molecules that lack heavy atoms (such as 3 and 
4, above) are subject to some uncertainty, and because we wished to know whether the structure- 
reactivity relationships developed above work for other systems, we sought additional ethenoanthracene 
derivatives for study. Serendipitously, 9,10-dihydro-9,10-ethenoanthracene-l1,12- 
bis(dipheny1phosphine oxide) (6, Scheme 3) was found to form a 1:l inclusion complex with ethanol that 
crystallized in the chiral space group P2,2,2, (ref. 7). Compound 6 has the advantage that it contains 
phosphorous, a sufficiently heavy atom to allow unambiguous assignment of absolute configuration by 
the Bijvoet method. 

Like its counterpart 3, adduct 6 was found to undergo the di-x-methane photorearrangement in solution 
as well as in the solid state. The solution photoproduct, 7, was, as expected, racemic, but irradiation of 
single crystals of the ethanol adduct of 6 led to photoproduct 7 in optically active form (89% ee at 84% 
conversion, room temperature). Even higher ees could be achieved at lower conversions and/or lower 
photolysis temperatures. As before, the use of enantiomorphous single crystals led to the optical 
antipodes of 7. 
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By chance, the single crystal of complex 6oEtOH chosen for Bijvoet analysis proved to have the same 
absolute configuration as the crystal of diester 3 that was studied. In the case of 6, the P-C=C-P dihedral 
angle was +23.9', much larger than the corresponding angle for 3, a finding that can be ascribed to the 
bulkier nature of the two diphenylphosphine oxide substituents. Since crystals of photoproduct 7 were 
not suitable for X-ray diffraction, the absolute configuration of this compound was determined from a 
crystal structure of the corresponding bis@hosphine) prepared by trichlorosilane reduction of optically 
pure 7. This showed that the reduction product (and hence photoproduct 7) formed by photolysis of (+)- 
6 had the all-(S) absolute configuration. This is exactly the same correlation as found in the case of 
diester 3, a result that can be taken as strong support for the mechanistic analysis presented above in 
which pathways I and/or I1 are favored by a combination of steric and orbital overlap factors. Further 
support for this picture comes from unpublished work with the corresponding complexes of 6 with 1- 
propanol and 2-propanol (ref. 8). Both complexes crystallize in chiral space groups (P2,2,2,), and 
photolysis of single crystals of these materials give compound 7 in S O 9 6  ee. In both cases, the absolute 
configuration assignments between reactant and photoproduct were made successfully, and the results 
conformed to the mechanistic picture outlined above. Reassuringly, in the case of the 1-propanol and 2- 
propanol complexes, the crystals chosen for analysis had negative P-C=C-P dihedral angles(-23' and - 
21', respectively) and led to the all-(R) enantiomer of photoproduct 7. Also in accord with this picture 
was the finding that the ethyl acetate complex of 6, which crystallizes in the achiral space group P2,h 
and therefore contains equal amounts of (+)- and (-)-conformers, leads to racemic 7 when irradiated in 
the solid state. 

id State Asvmmet ric Svnthesis Jonic Chir;ilAuxiliarv-Induced Sol .. 
In the previous two examples involving ethenoanthracene derivatives 3 and 6, the chiral space group 
necessary for asymmetric induction in the crystalline state was produced spontaneously. That is, the 
compounds had an inherent and natural tendency to crystallize in this manner. Such circumstances are 
rare, however, and most compounds like 3 and 6 that are achiral in solution prefer to crystallize in space 
groups that are also achiral (ref. 9). As a result, spontaneous crystallization of achiral compounds in 
chiral space groups cannot be relied upon as a general technique leading to asymmetric synthesis, and a 
more reliable method is required. To accomplish this, we have introduced the technique of the ionic 
chiral auxiliary (ref. 10). Consider, for example, the photochemical reaction of an achiral wboxylic 
acid that leads to a chiral product. If we treat the carboxylic acid with an optically active amine and then 
photolyze the resulting salt crystals (which are required to be in a chkal space group), two diastereomeric 
photoproduct salts can be formod. If one of these is formed in greater amounts than the other, an 
asymmetric induction has been achieved and the optically active ammonium ion has acted as an ionic 
chiral auxiliary. Of course the opposite approach, in which the ammonium ion is the prochiral 
photoreactant and the carboxylate anion is the ionic chiral auxiliary, is equally feasible. In this section 
and the one that follows we provide examples of this method of asymmetric synthesis and show how 
absolute configuration correlations between reactant and photoproduct provide insight into the details of 
the reactions involved. 

sdEaL! 

hv 
crystal 
- 

6*EtOH 7 

The first example we shall discuss involves carboxylic acid 8 (Scheme 4), another di-x-methane 
photoreactant. Treatment of this compound with (S,S)-(+)-pseudoephedrine (9) afforded salt 10, and 
irradiation of crystals of this material, followed by acidic workup and treatment with diazomethane, gave 
methyl ester 11 (ref. 11). The, regioselectivity of this reaction is in accordwith expectations based on the 
relative radical stabilizing and polar effects of the vinyl substituents on the initially formed biradical (ref. 
12). NMR spectroscopy using Eu(hfc), as a chiral shift reagent showed that photoproduct 11 was formed 
in over 95% ee, (+) enantiomer predominating; use of (R,R)-(-)-pseudoephedrine led to the (-) 
enantiomer with the same ee. 
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1. hv, crystal J 2. CH2N2 workup 

11 

Since the absolute configuration of pseudoephedrine is known, the X-ray crystal structure of salt 10 
establishes the absolute sign (and magnitude) of the CH,-C=C-COO dihedral angle, which was +8O. In a 
separate experiment (the photoreaction of salt 10 is not a single crystal-to-single crystal process), the 
absolute configuration of photoproduct 11 was determined by transforming it into the corresponding 
amide of (S)-(-)-a-methylbenzylamine and determining the crystal structure of this derivative (ref. 11). 
The correlated absolute configurations for reactant and product are those shown in Scheme 4. Once 
again, the results confomi to the structure-reactivity relationship first elucidated for diester 3, that is, the 
direction of initial benzo-vinyl bridging (shown by the shaded orbitals in structure 10) is dictated by the 
sense of twisting about the vinyl double bond. This makes a total of five separate ethenoanthracene 
derivatives whose solid state photochemistry conforms to such a reactivity patterii, and a sixth (not 
presented in this article in the interests of brevity) can be found in reference 13. It is likely, therefore, 
that this structure-reactivity relationship is general for compounds of this type. It is interesting to note 
that the structural features governing solid state reactivity in these cases are intramolecular in nature 
(orbital overlap and/or diminution of intramolecular steric interactions); crystal lattice effects seem to 
play a minor role other than to freeze the molecules in a single chiral conformation. A nice way of 
viewing the situation is to adopt the Biirgi-Dunitz approach (ref. 13) and consider these solid state 
conformers as molecules that are on their way to the transition state for the di-x-methane reaction, and 
that once initiated, there is an inherent tendency for these motions to be continued along the reaction 
coordinate rather than reversed. 

C o v  in The N o r r v  . .  
As part of our ionic chiral auxiliary studies, we had occasion to investigate the solid state photochemistry 
of salt 12 (Scheme 5). formed by treating the corresponding achiral a-adamantylacetophenone-p- 
carboxylic acid with (S)-(+)-prolinol (refs. 14.15). Crystals of salt 12 were dimorphic (plates and 
needles), and it is with the needle dimorph that we shall be concerned here. Irradiation of this dimorph 
(space group p2,2,2,) in the solid state led to cyclobutanol derivative 13 as the major product following 
acidic workup and esterification with diazomethane. Yang photocyclization is favored in this case, since 
type 11 cleavage would lead to the very highly strained adamantene. Strikingly, photoproduct 13 was 
formed in 97% ee at a conversion of 87% (dextrorotatory enantiomer predominating); use of (R)-(-)- 
prolinol led to (-)-13 in a similar ee. 
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(S)-13 (R)-13 

Since the absohte configuration of prolinol is known, the X-ray crystal structure gives us the absolute' 
configuration of the photoreactive component of the starting salt, which we define by using the sign of 
the dihedral angle O=C-C(a)-C(/3). For salt 12, this angle has a value of -82' (structure 14, Scheme 5). 
By good fortune, recrystallization of the crude reaction mixture from acetone deposited crystals that 
contained not only unreacted starting material, but the (S)-(+)-prolinol salt of the cyclobutanol- 
photoproduct as well. A crystal structure of this complex was successfully determined (ref. 15), and this 
gave us the desired absolute configuration correlation, which was that the -82' starting material leads to 
the cyclobutanol that has the @)-absolute configuration at the hydroxyl-bearing carbon atom. 

We are now in a position to analyze the course of the solid state reaction. Initial hydrogen atom 
abstraction undoubtedly involves the nearest y-hydrogen (y, 2.70 A), and this leads to 1,4- 
hydroxybiradical 15, assumed for convenience to have the same conformation as the starting material. 
At this point, instead of closing directly by overlap of the shaded orbitals, a process that would lead to 
unfavorable steric interactions between the aryl group and the adamantane ring, biradical 15 leads to the 
less hindered photoproduct 13. This can happen in two ways: (1) by rotation of biradical 15 about the 
C(a)-C(p) bond to give biradical 16, which undergoes closure to the (R)-form of photoproduct 13, or (2) 
by rotation about the C(a)-C(0H)Ph bond to form biradical 17, which could then close to the (S)- 
enantiomer of cyclobutanol 13. The absolute configuration correlation indicates that pathway 1 is 
followed, and this makes sense because it should clearly be easier for the spherical adamantane moiety to 
rotate about an axis in the solid state than for the aryl and hydroxyl groups to exchange positions, a 
process that would disrupt the strong ionic and hydrogen bond forces between the carboxylate anion and 
the prolinol cation. 

A final important point concerns the enantioselectivity of the fluid phase photorearrangement of salt 12. 
Irradiation of this material in chloroform led to no measurable optical activity in photoproduct 13. 
Similar results have been obtained for all ionic chiral auxiliary salts investigated. Evidently, in solution, 
the ions are not sufficiently well oriented or closely associated to lead to significantly different 
diastereomeric transition state free energies. 
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Photocvcli&on of m-chloroDhenvl-NN-diisorlr- * .  

We close this paper with a brief account of some very recent work by Hashizume et al. on an absolute 
configuration correlation carried out on the solid state photochemical reaction of m-chlorophenyl-NJV- 
diisopropylglyoxylamide (18) (ref. 16). This achiral compound was found to crystallize spontaneously 
in the now familiar chiral space group P2,2,2,, and substantial amounts of enantiomorphously 
homogeneous crystals of this material could be obtained by the seeding technique mentioned earlier. As 
shown in Scheme 6, irradiation of these crystals led to the p-lactam derivative 19 in what was reported to 
be 100% ee according to chiral HPLC (conversion unspecified). Interestingly, the o- and p-chlorophenyl 
analogs of compound 18 were found to crystallize in achiral space groups, and their solid state photolysis 
afforded racemic p-lactams. 

By taking advantage of the presence of chlorine as a heavy atom, the absolute structure of diketone 18 
along with the absolute configuration of its photoproduct 19 were determined independently (non- 
topotactic reaction) by X-ray crystallographic Bijvoet analysis. In the correlated reactantlproduct pair, 
diketone 18 has a negative O(l)-C(7)-C(8)-N(l) dihedral angle, and its photoproduct has the (S)-absolute 
configuration at C(7). the newly fonned stereogenic Center. This conelation, shown by structures 20 and 
21 (Scheme 6), is consistent with a mechanism in which the nearest 'y-hydrogen, H(9), is abstracted by 
O(1) followed by closure of the intermediate 1,4-biradical with retention of configuration at C(7). Thus, 
unlike the bimolecular deoxycholic acid/acetophenone system discussed earlier, there is no net rotation 
of the acyl group prior to radical coupling in the case of 
unfavorable steric consequences of inversion at C(7). 

Scheme 6 

diketone 18. This is reasonable given the 

20 21 
SUMMARY 

The use of chiral crystalline environments to carry out asymmetric inductions m high optical yields is now 
established beyond question as a viable technique m organic photochemistry, and the results presented m 
this paper clearly show that absolute configuration correlation studies of such processes can tell us a great 
deal about the mechanisms involved as well as the subtle mtra- and mtermobcular forces that govern the 
motions of the molecules along the reaction coordinate. To date, only two types of photochemical 
reactions have been studied fiom this point of vie-ose initiated by hydrogen atom abstraction and 
those involving the di-n-methane rearrangement. The approach is not limited to these reactions, however, 
and current work m our laboratory is geared towards extending such studies to other common organic 
photochemical processes. 
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