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Abstract: Many endocrine systems have been found to incorporate some form of cascade
mechanism into their operation. Such a mechanism involves an amplification system where
an initial reaction gives rise to the generation of multiple second reactions, each of which sets
off multiple third reactions, and so on. Examples will be presented, with special attention
paid to the hypothalamus–pituitary–testicular axis. The production and secretion of luteiniz-
ing hormone (LH) is governed by the medial-basal region of the hypothalamus. It is well
known that the release of LH is a highly regulated process determined by negative and posi-
tive feedback, as well as neural components. The presence of gonadatropin-releasing hor-
mone (GnRH) on specific adenohypophyseal cell membrane receptors results in the release
of LH, which is then transported systemically to the Leydig cells of the testes. All the factors
governing the release of these hormones, as well as a biochemical description of their actions,
have not been completely elucidated, nor is the mechanism behind the pulsatile fashion in
which the decapeptide GnRH and LH are released clearly explained. We describe how such
a cascade mechanism in a self-regulatory system may be modeled and analyzed by a singu-
lar perturbation approach, identifying conditions that give rise to episodic hormone secretion
or activity. Insightful and valuable interpretations can be made from such analysis of the cas-
cade system.

INTRODUCTION

In recent years, there has been a great surge of interest in the study of how information is represented
and transmitted in biological systems, specifically in the new field of bioinformatics. In nerve cells,
information is transmitted through electrical impulses, which are sometimes generated as high-fre-
quency bursts, followed by periods of quiescence. These impulses also cause muscles to contract and
endocrine cells to secrete hormones. Quite often, bursting or episodic activities are observed in biolog-
ical systems, particularly in endocrine cells. Attempts to model and simulate such mechanisms most fre-
quently lead to nonlinear differential equations. This presents us with quite a challenge to develop non-
linear systems theory and analytical techniques to qualitatively and quantitatively unravel the intrinsic
mechanisms that generate such behavior in these complex systems.

The study of endrocrinology over the past century has been mainly dependent upon the scientific
methodologies available to probe the various endocrine systems. Thus, endocrinology has developed
from being largely pursued at the physiological level into a biochemical era, which began in approxi-
mately 1955–1960 [1] and extends to the present time. Advances in chemical methodology, such as
chromatography, mass spectrometry, nuclear magnetic resonance spectroscopy (NMR), and X-ray crys-
tallography, have and continue to permit the detection and chemical characterization of minute quanti-
ties (nanograms or picograms) of new hormones and the characterization of the many receptors.
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With the invention of scanning electron microscopes and confocal microscopy, which allows real-
time imaging of living cells, the science of endocrinology is advancing rapidly. Scientists have been
busily active in categorizing and defining the scope of influence and molecular mode of action of dif-
ferent hormones, as well as the mechanisms in their secretion.

Many endocrine systems incorporate some form of cascade mechanism into their operation [1].
A system with a cascade mechanism is an amplification process where an initial reaction results in the
generation of multiple second reactions, each of which sets off multiple third reactions, and so on.

In this paper, we first discuss two examples of such cascade systems and explain how modeling
and analysis of the system may be carried out based on singular perturbation principles. The method
utilizes simple geometric arguments based on the assumption of highly diversified dynamics inherent
to the cascade system. Application of the technique is done on the hypothalamus–pituitary–testicular
axis involved in the biosynthesis and secretion of testosterone in response to blood levels of luteinizing
hormone (LH). Episodic release of LH is triggered by the presence of the gonadotropin-releasing hor-
mone (GnRH), secreted from the hypothalamus in a pulsatile fashion [1,2], which we attempt to explain
through modeling and analysis. The analysis will then be extended to encompass higher-dimensional
systems, which involve a multitude of components or species.

CASCADE HORMONE SYSTEMS

In the following, we describe two examples of systems with cascade mechanism. One classical bio-
chemical cascade mechanism, at the cellular and molecular level, is generated by the action of a hormone,
such as the action of glucagon at the cell membrane to produce an increase in cyclic AMP. Figure 1 shows
a schematic description of a mechanism leading from the cell surface hormonal signal to the cellular
metabolic response: glucagon and glycogenolysis. The cascade may be visualized in terms of alter-
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Fig. 1 A schematic description of a mechanism leading from the cell surface hormonal signal to the cellular
metabolic response: glucagon and glycogenolysis. 



ations of cellular response, stimulation of glycogenolysis to generate glucose for export to the extra-
cellular space, and the general circulating system [1].

As so clearly elucidated by Norman and Litwack [1], the cascade begins with glucagon combin-
ing with its cell membrane receptor, marked (1) in Fig. 1. This then stimulates the activity of adenylate
cyclase, possibly mediated by a transducing element, on the cytoplasmic side of the membrane, marked
(2) in Fig. 1. As a result, the level of cyclic AMP increases, which activates a protein kinase (3), while
the protein kinase subunits catalyze the phosphorylation of inactive phosphorylase kinase in reaction
(5), as well as the active glycogen synthetase (4), to produce the phosphorylated inactive form, a step
marked (6) in Fig. 1. The resulting phosphorylated inactive form consequently stimulates glycogenol-
ysis in step (7) to form glucose 1-phosphate, which is further metabolized to glucose (8). Finally, glu-
cose is transported to the extracellular space and into the general circulation (9). More detailed discus-
sion of each step in the above-described cascade may be found in the work by Norman and Litwack [1].
The system is considered a cascade system due to the fact that each step following hormone binding is
mediated by an enzyme that can turn over multiple substrate molecules.

Another system, which also incorporates the cascade mechanism, involves the central nervous
system (CNS), the hypothalamus, pituitary, and the distal hormone secretion glands.

As explained by Norman and Litwack in their seminal work on hormones [1], the cascade effect
may be produced by a single event or signal in the external or internal environment. A signal can be
sent by either electrical or chemical transmission to the limbic system and then to the hypothalamus.
This results in the secretion of a releasing hormone into the closed portal system connecting the hypo-
thalamus and anterior pituitary shown in Fig. 2. It has been documented that releasing hormones may
be secreted in nanogram amounts and half-lives of about 3–7 min. The releasing hormone consequently
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Fig. 2 Diagram showing the cascade hormonal system, the hypothalamus–pituitary–testicular axis, on proceeding
down the cascade from the releasing hormone to the terminal hormone, there are increasing masses of the hormones
released. 



signals the release of the specific anterior pituitary hormones, which may be secreted in microgram
amounts with half-lives on the order of 20 min or longer. The anterior pituitary in turns signals the
release of the ultimate hormone, which may be secreted in many micrograms or milligram amounts and
can be quite stable.

Thus, amplification of a single event at the outset could prove to be a factor of thousands to a mil-
lionfold, as hormone stability and the amounts of hormones increase as we proceed down the cascade.

Three-component cascade system

Letting x(t), y(t), and z(t) represent the densities or levels of the three components at anytime t in the
cascade system described above, their rates of production will form a model consisting of the follow-
ing system of differential equations

(1)

(2)

(3)

where ε and δ are small positive parameters. Thus, when the quantities on the right sides of eqs. 1–3 are
finite and different from zero, |y·| is of the order ε and |z·| is of the order ε δ. Thus, x is assumed to pos-
sess the fastest dynamics, y an intermediate time response, while z possesses the slowest dynamics of
the three components.

It is well known that the system (1–3) with small ε and δ can be analyzed with the singular per-
turbation method [3], which under suitable regularity conditions, allows the approximation of the solu-
tion of the system (1–3) with a sequence of simple dynamic transitions occurring at different speeds.

Given an initial condition (x0, y0, z0), the slow z and intermediate (y) variables are frozen, and the
system will develop according to the “fast system”.

Thus, x(τ1)eventually tends toward a stable equilibrium x–(x0, y0, z0) of the fast system. Then, as z is still
frozen at z0, the transitions will develop at intermediate speed according to the “intermediate system”

until an equilibrium y–(x0, y0, z0) of the intermediate system is reached. A third transition then develops
at low speed along the curve f = g = 0 to end at an equilibrium or form a closed cycle, depending on the
stability properties of the three equilibrium manifolds f = 0, g = 0, and h = 0.

The sequence of these transitions thus constructed then approximates the solution of the system,
in the sense that the real trajectory is contained in a tube around the traced transitions, and that the
radius of the tube goes to zero with ε and δ. More detail of the main aspects of the method can be found
in the work by Muratori and Rinaldi [3], while examples of applications to nonlinear systems in biol-
ogy and medicine are available in the works of Lenbury et al. [4,5].

Application in modeling pulsatile secretion of LH

The hypothalamus–pituitary–testicular axis is diagrammed schematically in Fig. 2. The release of LH
is a highly regulated process determined by (a) negative feedback, (b) positive feedback, and (c) neural
components.
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The decapeptide GnRH is released from the hypothalamus in a pulsatile fashion with short
latency and initiates the episodic secretion of LH. The LH is then transported systemically to the Leydig
cells of the testes. LH-mediated stimulation of testosterone synthesis and secretion by the Leydig cells
is initiated by the binding of LH to hormone-specific receptors on the outer membranes of the Leydig
cell. The rate of biosynthesis and secretion of testosterone, whose structure is shown in Table 1, is pos-
itively correlated with the blood levels of LH, while the secretion of the gonadotropin can be dimin-
ished by increasing blood concentrations of testosterone, which facilitates their binding to steroid recep-
tors in both the hypothalamus and pituitary. This is called “suppressive negative feedback”. The precise
details of the feedback mechanism in this self-regulatory system are not yet clear. Nevertheless, close
study of the process has led Liu and Deng [6] to propose a model consisting of the following equations.

(4)

(5)

(6)

where R, L, and T are concentrations of GnRH, LH (above the basal level), and testosterone, respec-
tively. The first term in eq. 4 accounts for the autoregulatory effect of GnRH and T on GnRH secretion.
The second term represents the removal of GnRH proportional to the amount present, and similarly for
all the last terms in eqs. 4–6.

The factor a10R in eq. 5 accounts for the stimulating effect of GnRH on the release of LH, while
a9 accounts for the autonomous secretion of LH independent of GnRH. The term α15L in eq. 6 accounts
for the stimulating effect of LH on testosterone secretion, while a14 is the secretion rate of T independ-
ent of LH. The factors in the denominators of the positive terms in the 3 equations account for autoreg-
ulation on the rates of secretion of all 3 hormones.

Taking into account the cascade effect of the system described earlier, we can assume that the
time responses of the three components in the above system are quite diversified, and scale the dynam-
ics of the cascade by means of two small dimensionless positive parameters ε and δ as follows. Letting
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Table 1 Relevant information on testosterone.

Biochemical aspects Data

Plasma concentration (ng/100 ml) 300–1100
Testes secretion rate 5000
Metabolic clearance rate (litre/day) 980
Site of production Leydig cells of testes

Structure 

Principal biological function Maintenance of functional male repro-
ductive system and secondary male 
sex characteristics
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x = R, y = ε L, z = εδT,

we are led to the following system.

(7)

(8)

(9)

We are able to show that the relative positions of the 3 equilibrium manifolds f = 0, g = 0 and 
h = 0 will be as depicted in Fig. 3 if the following conditions hold:

a8 < a2 (10)

a6a8 – a3 < 0 (11)

(12)

27q2 + 4p3 < 0 (13)

4u3 + 27v2 > 0 (14)

y1 < ym and yM < y2 (15)

where

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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(23)

(24)

while y1, y2 are the y-coordinates of the minimum and maximum points, respectively, on the f = g = 0
curve, and ym, yM are those of the f = h = 0 curve, as seen in Fig. 3. Specifically, inequality (15) is the
separation condition which ensures that the slow manifold h = 0 separates the two stable branches of
the curve f = g = 0 for y in a certain interval containing the point where f = g = h = 0.

The system, initially at a generic point, say point A of Fig. 3, will make a fast O(1) transition,
indicated by three arrows, to the stable portion of the slow manifold f = 0 (point B in Fig. 3). As point
B is approached, y has slowly become active. An O(ε) transition at intermediate speed, indicated by two
arrows, is made along f = 0 in the direction of decreasing y, since g > 0 here, to point C on the stable
part of the curve f = g = 0. From point C, a slow O(εδ) transition, indicated by a single arrow, is then
made along this curve in the direction of increasing z, since h > 0 here below the surface h = 0.

Once point D is reached, the stability of the manifold is lost. The O(1) time-scale becomes dom-
inant once again. Hence, the orbit follows a path close to the curve y = constant, z = constant, at high
speed, bringing the system to point E on the other stable branch of the manifold f = 0. This is followed
by a motion at intermediate speed on f = 0 to point F on the curve f = g = 0 Consequently, the system
will slowly develop along this line in the direction of decreasing z, since h is now negative.

At point G on this curve, the stability will again be lost and a fast transition will bring the sys-
tem back to point H on the stable portion of f = 0, followed by a motion at intermediate speed to point
I on the curve f = g = 0, before repeating the same previously described path, thereby forming a closed
cycle IDEFGHI. Thus, the existence of a limit cycle in the system for ε and δ sufficiently small is
assured. The exact solution trajectory of the system will be contained in a tube about this closed curve,
the radius of which tends to zero with ε and δ.
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Fig. 3 Shapes and relative positions of the equilibrium manifolds in the case where a limit cycle exists. Here, three
arrows indicate fast transitions, two arrows indicate transitions at intermediate speed, and a single arrow indicates
slow transitions.



A computer simulation of eqs. 7–9 is presented in Fig. 4 with parametric values chosen to sat-
isfy the inequalities (10–15). The solution trajectory, projected onto the (y, x)-plane, is seen in Fig. 4a
to tend to a limit cycle as theoretically predicted. The corresponding periodic time series of LH is shown
in Fig. 4b.

Extension to higher-dimensional systems

In order to extend the above concept to higher dimensional systems, let us consider a system of n + 3
differential equations which may be written in the form
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Fig. 4 A computer simulation of the model system of eqs. 7–9 with parametric values chosen to satisfy the conditions
identified in the text for which periodic solutions exist. The solution trajectory, projected onto the (y,x)-plane,
is seen in (a) to tend toward a stable limit cycle as theoretically predicted. The corresponding time series of 
GnRH (x) and LH (y) are shown in (b). Here, ε = 0.8, δ = 0.05, a1 = 0.2, a2 = 0.1, a3 = 3, a4 = 0.1, 
a5 = 0.01, a6 = 0.5, a7 = 2, a8 = 0.5, a9 = 0.05, a10 = 1.5, a11 = 1.0, a12 = 0.2, a13 = 0.01, a14 = 0.2, a15 = 0.1, 
a16 = 0.1, a17 = 0.1, a18 = 0.2, a19 = 0.2, a20 = 0.1, a21 = 0.1, and a22 = 0.1.



(25)

(26)

(27)

(28)

where ε, δ, and η are small positive constants, α∈ℜN is the N-dimensional vector of system parameters, 

while               and

are the n + 3 state variables, and

Hence, x is the fast variable, y the intermediate, z the slow, and wi, i = 1, 2, …, n, the very slow com-
ponents of the system.

Employing the same line of arguments as above, we first assume that w is varying extremely
slowly in comparison to the first three components x, y, and z. Then, we may initially assume that w is
kept frozen at a constant value w(0) while x, y, and z vary according to the three-dimensional system

(29)

(30)

(31)

Thus, if, for suitable parametric values α, the relative positions of the three equilibrium manifolds
of the system (29–31) are the same as those three shown in Fig. 3, then trajectories will develop as
described earlier. However, as w varies with time, though very slowly, the shapes and positions of the
three manifolds shift slowly as time passes. The coordinates of the points m, M, and O are, in this case,
[xm(w;α),ym(w;α),zm(w;α)], [xM(w;α),yM(w;α),zM(w;α)], and [xo(w;α),yo(w;α),zo(w;α)] respectively,
since F, G, and H are all functions of w.

Moreover, if we further assume that each of the equations

(32)

can be solved for z as an explicit function of the other components:

(33)
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then separation conditions are needed to ensure that the manifold H = 0, as well as those described by
the equations in (33) are positioned in between the two stable branches of the curve F = G = 0, in order
that a limit cycle exists. These conditions are stated in the following theorem, under all the assumptions
mentioned above.

Theorem: Suppose that the functions F(x, y, z, w;α), G(x, y, z, w;α), H(x, y, z, w;α), and K(x, y,
z, w;α), are continuous, and that the functions xM(w;α),zM(w;α), xm(w;α),zm(w;α), xO(w;α),zO(w;α),
and Zi, i = 1, 2, …, n, are continuous and bounded. If, for some permissible value of α, and each fixed
value of w, there exists a unique equilibrium point O, where F = G = H = 0, and K = 0, such that

(34)

(35)

(36)

(37)

where the supremum and infemum of Zi are taken over its domain ∆i which is a subset of ℜn+2, then a
limit cycle exists for the system of eqs. 25–28, provided that ε, δ, and η, are sufficiently small.

CONCLUSION

Analysis of a self-regulatory endocrine system that incorporates a cascade mechanism has been eluci-
dated through modeling and arguments based on the singular perturbation principles that have exploited
the highly diversified dynamics of the cascade system. The method decomposes the system into fast,
intermediate, and slow components. The slow-motion trajectories lie on the equilibrium manifold of the
fast component. The existence of limit cycles characterized by fast transitions between stable equilib-
ria gives rise to periodic solutions. Thus, the temporal secretion patterns often observed in clinical data
[1,2] appear to be the effect of the inherent cascade mechanism combined with the mixture of negative
and positive feedback autoregulation process, giving rise to a natural frequency in the pulsatile mode of
secretion. When this is interfered with by signals from the neural components or other external factors,
irregular secretion patterns may result which have been frequently observed clinically [1,2].

The above analysis provides an example of how episodic activities in a cascade system may be
modeled and explained. The technique has then been extended to higher-dimensional systems in order
to be capable of coping with multiple-component cascades.
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