
Pure Appl. Chem., Vol. 74, No. 6, pp. 907–914, 2002.
© 2002 IUPAC

907

Modeling genome structure and function*

Ram Samudrala 

Department of Microbiology, University of Washington, Seattle, WA 98195-7242,
USA

Abstract: The ongoing genomics revolution has led to the creation and enumeration of all the
genes encoded within several organisms. The next steps are to catalog all proteins, their struc-
tures, and their functions in different contexts. At the same time, scientists have been pursu-
ing experimental and theoretical approaches to integrate this information to gain understand-
ing of the behavior of entire systems. In this work, we provide a framework for obtaining
structures for all tractable protein sequences encoded by a genome, and using the resulting
structures to aid in understanding function. Our aim is to integrate the output produced with
other genomic and proteomic data to create a comprehensive picture of systems and organis-
mal biology. 

INTRODUCTION: CREATING A “PARTS LIST” OF GENES AND PROTEINS

A fundamental biological challenge is to understand how the linear information in an organism’s
genome is processed to produce the resulting behavior (phenotype). Given a gene, it is possible to
directly determine the protein sequence using the Genetic Code. Understanding how the amino acid
sequence is translated into a 3D structure, and how these structures interact with their environment to
give rise to biological function, are among the most fascinating and important problems in the world
today.

The nucleotide sequences of all the genes present in an organism have been determined for sev-
eral organisms [1,2]. The sequencing of whole genomes heralds a new revolution in biology, both
molecular and organismal. Sophisticated computational and experimental techniques can be used to
parse an entire genome to create a “parts list” of all the genes present, and, consequently, all the pro-
teins encoded by those genes.

Such a “parts list” is only the first step in understanding the correlation between genotype and
phenotype. Once we have the sequences of all the proteins encoded by an organism’s genome, we need
to understand how the proteins function in the context of their environment. To help achieve this goal,
one possible approach is to determine the 3D folds these proteins adopt, and use that as a means of
annotating function, since it is the structure that mediates function in nature. Once the structures and
functions are obtained for the proteins, they can be integrated with the vast amount of individual
sequence, genomic (microarray), and proteomic (mass spectrometry, genome-wide two-hybrid assay)
data to provide a comprehensive picture of organismal behavior [3,4].

*Plenary lecture presented at the International Conference on Bioinformatics 2002: North–South Networking, Bangkok,
Thailand, 6–8 February 2002. Other presentations are presented in this issue, pp. 881–914.



OBTAINING 3D STRUCTURE FOR PROTEINS

Protein structure determination

There are two primary experimental techniques used for determining a protein structure: X-ray crystal-
lography and nuclear magnetic resonance (NMR) experiments. These techniques form the basis of
global efforts in structural genomics projects currently underway [5]. While these methods produce the
best models for the native structure of a protein, they are generally time- and labor-intensive. The con-
tinually increasing amount of DNA and protein sequence data from genome projects makes it infeasi-
ble for NMR and X-ray crystallography techniques to rapidly provide information about the 3D struc-
tures of all the sequences determined [6]. Thus, there is an urgent need for robust methods for predicting
structure from amino acid sequence.

Protein structure prediction

There are two primary categories of methods for predicting protein structure from sequence: compara-
tive and ab initio modeling. In the comparative modeling category, the methodologies rely on the pres-
ence of one or more evolutionarily related template protein structures that are used to construct a model;
the evolutionary relationship can be deduced from sequence similarity [7–10] or by “threading” a
sequence against a library of structures and selecting the best match [11–13]. In the ab initio category,
there is no strong dependence on database information, and prediction methods are based on general
principles that govern protein structure and energetics [14–18]. The categories vary in difficulty, and,
consequently, methods in each of these categories produce models with different levels of accuracy rel-
ative to the experimental structure.

Protein structure prediction methods are rigorously evaluated by the Critical Assessment of
Structure Prediction (CASP) experiments held every two years (special issues of Proteins: Structure,
Function, Genetics, 1995, 1997, 1999, and 2002). These experiments evaluate prediction techniques by
asking modelers to construct models for a number of protein sequences before the experimental result
is known, over a period of 3–4 months. We have taken part in all four CASP experiments, including the
most recent one (CASP4) that finished in December 2000 [19]. The CASP4 results provide a bench-
mark as to what level of model accuracy we can currently expect from our approaches.

At CASP4, we made predictions for all of the 40 targets for which an experimental answer was
made available [20]. The CASP4 results show that within each of the general structure prediction cate-
gories, some methods, including ours, are able to produce models with a fair amount of accuracy.

Comparative modeling and fold recognition
Protein sequences that were determined to be evolutionarily related to sequences with known structure
were modeled using comparative modeling techniques developed by us. The same procedure was used
for comparative modeling and fold recognition targets. Target sequences related to sequences that have
conformations determined by experiment were candidates for comparative modeling. Generally, align-
ments were obtained from the various servers available as part of the CAFASP meta-server [21]. Initial
models were then constructed, and structure-based alignments were used in an iterative manner to refine
alignments manually. Nonconserved side chains and main chains were constructed using a graph-theo-
retic approach with sampling provided by exhaustive and database searches. The final conformations
were minimized by ENCAD [20].

Figure 1 shows some examples of the comparative modeling predictions with different difficul-
ties made at CASP4. In the comparative modeling category, we made 29 predictions for targets that had
sequence identities ranging from 50–10 % to the nearest related protein with known structure. For 23
of these proteins, we produced models ranging from 1.0–6.0 Å root mean square deviation (RMSD) for
the Cα atoms between the model and the corresponding experimental structure for all or large parts of
the protein, with model accuracies scaling fairly linearly with respect to sequence identity (i.e., the
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higher the sequence identity, the better the prediction). Generally, on the models that were constructed
to within 4.0 Å, side chains were predicted with an accuracy of 60–75 % correct for the χ1 angles, small
loops were predicted within 1–2 Å, and larger loops were predicted to 1–3 Å. The accuracy of the loops
and side chain building decreased as the relationship between the template and target sequences grew
more distant.

Ab initio prediction
Target sequences without known homologs or analogs that were small in size and/or predicted to have
largely helical content were modeled by our ab initio protocol. Such clusters can be subsequences of
larger proteins, in which case they most likely represent domain boundaries [22]. Our general paradigm
for predicting structure involves sampling the conformational space (or generating “decoys”) such that
native-like conformations are observed, and then selecting them using a hierarchical filtering technique
with many different scoring functions. The two parts to our method are designed such that they are com-
pletely automated and readily extendable to the genome-wide level. Generally, we explore combina-
tions of different representations/move sets with two search methods for exploring protein conforma-
tional space, and combinations of a variety of scoring function “filters” to identify biologically relevant
conformations. We start with a sequence and generate conformations using two different move sets:
fragments from a database with identical sequence and a 14-state φ,ψ model. Many trajectories are gen-
erated and minimized using two different protocols: Monte Carlo with simulated annealing and a
genetic algorithm search. The minimization function is primarily an all-atom conditional probability
discriminatory function, a hydrophobic compactness function, and a bad contacts function. Once a set
of conformations is generated, a hierarchical filtering technique is applied using many different fil-
ters/scoring functions to produce one or a few final conformations [20].

Figure 2 illustrates some of our more successful predictions at CASP4 in the ab initio category.
We made 11 predictions for targets that had no detectable sequence relationships. We produced 9 mod-
els with accuracies ranging from 4.0–6.0 Å Cα RMSD for 60–100 residue proteins (or large fragments
of a protein).
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Fig. 1 Six examples of our comparative modeling predictions at CASP4 for targets with different difficulties. The
superposition of the model and the experimental structures is shown, along with the Cα RMSD relative to the
experimental structure and the percentage identity of the alignment between the target and template sequences. We
made useful predictions for 23 out of 29 targets (**): sequences with high percentage identity to the template
structures (≥50 %) were modeled well (1–2 Å RMSD) with model accuracy decreasing (4–6 Å RMSD) fairly
linearly as the relationship becomes more tenuous (10–25 % sequence identity).



MODELING STRUCTURES FOR ALL PROTEINS ENCODED BY A GENOME

Even though prediction methods need further development before they can produce models that can
match experiment, they can be applied to large numbers of sequences relatively easily (costing only
computational time), and the outputs produced could be thought of as an “educated guess” as to the pro-
tein’s native structure. It is thus possible to construct a “genome prediction engine” using the computa-
tional resources available where we can take the protein sequences encoded by an organism’s genome
and attempt to predict their structures, and use the modeled structures to predict functions (Fig. 3).

Analyses of small genomes show that about 30–40 % of the proteins within the genome can be
modeled by comparative modeling methods [23–26]. An additional 20–30 % of the sequences are (or
contain) small domains with simple secondary structures that are viable candidates for ab initio struc-
ture prediction [27]. The remaining proteins are usually not amenable to structure prediction and some-
times even structure determination (a significant fraction of the latter are membrane proteins).

ANNOTATING FUNCTIONS FOR PROTEINS

The reason for obtaining structures for proteins encoded by a genome is so that they can be used to
understand function and further our knowledge about the organism’s biology. Given the different pro-
tein sequences, and corresponding predicted and experimental structures, it is possible to use a barrage
of techniques to annotate functions. Even though structure prediction methods need further develop-
ment, it is possible to produce models where functional hypotheses can be tested in a rational manner
(for example, with mutagenesis experiments) through detailed analysis [28,29]. Additionally, structure
comparisons can be used to detect functional homology that cannot be detected by sequence informa-
tion alone [26], and microenvironment analyses that parse models for particular 3D motifs [30] can be
used to discern molecular function. Both these structure-based approaches, used complementarily in
conjunction with experimental data and sequence-only approaches like PROSITE [31], BLOCKS [32],
and PRINTS [33], will enable us to better assign function to all or large parts of a proteome (Fig. 4).
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Fig. 2 Examples of our ab initio predictions. Five of the examples were predictions submitted for CASP4; the sixth
(T102/as48) is a “postdiction” using the actual secondary structure assignment that was available to all CASP
predictors (our CASP4 submission for this target used predicted secondary structure, which was only 60 %
accurate). The experimental structure is on the left, and the model is on the right. We were able to make
topologically accurate predictions for 9 out of 11 targets modeled (**). Targets with largely helical content are
modeled well, with predictions as accurate as 4.0 Å Cα RMSD for 80 residues.



PRELIMINARY DATA AND RESULTS

Structure prediction

We have started implementing the above protocols for the genomes of three organisms: the opportunis-
tic pathogen Pseudomonas aeruginosa, the model cereal Oryza sativa (rice), and human. The sample
sizes we are currently dealing with are ∼6000 coding sequences for the P. aeruginosa and ∼60 000 for
the rice and human genomes. For all three genome sets, 30–40 % of the sequences can be reliably mod-
eled using comparative modeling and fold recognition methods. Another 10–20 % of the sequences (or
domains within the sequences) can be modeled using ab initio methods. Our goal, after performing the
modeling for all tractable proteins, is to use these modeled structures to annotate function. 

For each of the three organisms, have produced models for two initial sets of 500 proteins using
our predictive methodologies in each category. For modeling by homology, the proteins selected were
those that had relatively high similarity to those with known structure, so that we could be assured of
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Fig. 3 Computational aspects of structural genomics. In the first steps (A & B, in an abstract hypothetical example
above), we compare the protein sequences encoded by the genome of an organism to all known protein sequences
and cluster them into families (solid circles). All members of families containing a known structure will be modeled
using comparative modeling methods (B). The modeled structures will be used to cluster the proteins further, and
the resulting alignments will be used to construct superior sequence recognizers and find more evolutionary distant
relationships (C) (dotted circles). These will be used for further modeling. Proteins not modeled by comparative
modeling techniques will be screened to determine if they can be predicted using ab initio methods (D). The
remaining proteins will be candidates for experimental structure determination (E). Once models for all tractable
proteins are obtained, this process can be iterated across different genomes, after further analysis of the available
data (F). (Figure idea courtesy of Steven Brenner.)



the high quality of the models and lack of an alignment error. These models are expected to be
1.0–2.0 Å RMSD from the corresponding native conformations based on our control studies where we
modeled six proteins from each organism whose experimental structure was already determined, and
our CASP results. In the case of our ab initio predictions, we selected the 100 proteins based on their
having little or no structural or functional similarity to any other protein in the sequences databases,
such that any annotation we make will provide information about a protein where none existed before.

Functional annotation

The initial sets of models produced using comparative modeling methods are not likely to be superior
to straightforward sequence comparison for annotating function, but they will be useful for detailed
studies where there is additional experimental data available. 

For our ab initio predictions, about 10 % of the proteins modeled have strong structural hits to
proteins in the SCOP database [34]. Even though structure comparison can be used to detect homology
not observed by performing sequence comparisons, it is not clear whether modeled structures would
find the same matches. To test this in a preliminary manner, we compared both the structures and our
best predicted ab initio models of six CASP targets to determine if they identified the correct homolog.
These proteins did not display a sequence relationship to any protein with known structure, but the
structure comparisons provide strong evidence for an evolutionary relationship. In all six cases, the top
scoring protein, measured using the Z-score provided by the CE program [35], was identical regardless
of whether the predicted model or the actual experimental structure was used. This would suggest that
structure comparisons of the models can be used with a reasonable expectation that they would produce
similar results if the corresponding experimental result were used.
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Fig. 4 Computational aspects of functional genomics. The structure-based methods we use include structure
comparisons to infer function from homology, and microenvironment analysis to identify specific structural motifs
corresponding to a particular function. Our goal is to use a barrage of computational techniques, both at the
sequence and structure level, to annotate function in conjunction with available experimental data.



The best structural alignments can be used to create a comparative model, which can then be used
to screen the entire sample of conformations generated by our ab initio protocol. We have performed
this type of an analysis for the type III chaperone, Invb, from Salmonella typhimurium, allowing us to
map mutations affecting binding to its effector proteins in a robust manner. The final model produced
after iterating this process results in a mapping where the mutations are clustered strongly and provide
strong evidence of putative binding sites. This alignment and subsequent model is superior to any pro-
duced by publicly available popular fold recognition/threading servers.

ASSIGNMENT OF CONFIDENCES AND DISSEMINATION OF DATA

We can assign preliminary estimates of confidence for structure and function for these sets of proteins
based on the consensus results of many different sources, but more predictions are necessary to develop
a better model for assigning confidences (for example, if the results of the modeling of two homolo-
gous proteins agree, then the prediction is more likely to be correct). Currently, it takes about a month
on a farm of 64 1 GHz Pentium III processors to produce 200 comparative and ab initio models, and
also to run the sequences through a barrage of sequence-only methods to gain more evidence. Our goal
is to continue the modeling process in an iterative manner, continuing to add discrete sets of proteins to
our modeling queue. The results of the modeling, along with summaries of the predictions made in con-
junction with experimental data, will be made available via the Bioverse Web server [36].

INTEGRATING MOLECULAR AND GENOMIC DATA 

Proteins in a cell do not work in isolation of one another. Thus, to understand the function of multipro-
tein complexes, or whole proteomes, it is necessary to have a structural and functional model for many
proteins encoded by the genome of an organism. The CASP results indicate that structure prediction
methods have matured to a point where they can be applied on a genome-wide scale, and that these
structures can be used with novel but straightforward approaches to understand molecular function
[28,30,37].

As technology develops, the sequencing of genomes for specific members of a population will
become routine. However, raw sequences offer little information on their own. Obtaining structures for
all tractable proteins encoded by an organism’s genome, through computational and experimental tech-
niques, combined with other genomic/proteomic data, gene expression arrays [38], genome-wide two-
hybrid experiments [39], and other proteomics studies [40], will provide us with a dynamic picture of
organismal structure, function, and evolution [41].
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