Pure Appl. Chem., Vol. 77, No. 1, pp. 145–153, 2005. DOI: 10.1351/pac200577010145 © 2005 IUPAC

Chemistry of tetrathiomolybdate and tetraselenotungstate: Applications in carbohydrate chemistry*

Perali Ramu Sridhar, V. Saravanan, and S. Chandrasekaran[‡]

Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India

Abstract: An efficient one pot synthesis of thio and selenolevoglucosans from 1,6-diactivated carbohydrate derivatives has been achieved using benzyltriethylammonium tetrathiomolybdate, $[BnNEt_3]_2MoS_4$, as a sulfur transfer reagent and tetraethylammonium tetraselenotungstate, $[Et_4N]_2WSe_4$, as a selenium transfer reagent, respectively. The methodology has also been extended to the synthesis of 1,5-epithio and 1,5-episeleno pentoses.

INTRODUCTION

The reagents, benzyltriethylammonium tetrathiomolybdate, $[BnNEt_3]_2MoS_4 \ 1 \ [1]$, and tetraethylammonium tetraselenotungstate, $[Et_4N]_2WSe_4 \ 2 \ [2]$, have been shown to be useful for sulfur and selenium transfer reactions, respectively, in organic synthesis. Synthesis of disulfides from alkyl halides [3], ring opening of epoxides [4], tandem sulfur transfer/reduction/Michael addition [5] in one pot, and reduction of aryl azides to amines [6] and alkyl azides to imines [6] have been reported from our laboratory using the reagent tetrathiomolybdate **1**. It has also been used for the selective deprotection of propargyloxycarbonyl (**Poc**) protective group for amines [7] in peptides and for alcohols [8] in carbohydrate chemistry. Recently, a regioselective reduction of anomeric azides [9] to amines using the reagent **1** has been reported. Reagent **1** has also been used, as a sulfur transfer reagent, for the synthesis of phosphorothioate oligonucleotides [10]. On the other hand, tetraselenotungstate **2** has been used for the formation of diselenides [2b] from alkyl halides and in the synthesis of selenium analogs of several amino acid derivatives [11] (Scheme 1).

$$\begin{array}{c} (\int_{n}^{X} & MoS_{4}^{2^{-}}, 1 / (1.1 \text{ eq.})CH_{3}CN \text{ (or)} \\ WSe_{4}^{2^{-}}, 2 / (1.1 \text{ eq.})CH_{3}CN, \text{ rt} \\ \hline & \\ \hline & 76-95 \% \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (\int_{n}^{Y} & V & V \\ R^{1}HN & CO_{2}R^{2} & R^{1}HN \\ \hline & CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ CO_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \\ \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \end{array} \xrightarrow{R^{1}HN} \begin{array}{c} (O_{2}R^{2} & R^{1}HN \end{array} \xrightarrow{R^{1}HN} \xrightarrow{R$$

Scheme 1

In this article, we report on the utility of reagents 1 and 2 toward an efficient synthesis of thio and selenolevoglucosans, which are excellent synthons for the synthesis of deoxy sugar derivatives, involving a one pot sulfur/selenium transfer/reduction thiation/selenation reactions.

^{*}Paper based on a presentation at the 24th International Symposium on the Chemistry of Natural Products and the 4th International Congress on Biodiversity, held jointly in Delhi, India, 26–31 January 2004. Other presentations are published in this issue, pp. 1–344.

[‡]Corresponding author: Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India

SYNTHESIS OF SUGAR DISULFIDES AND SUGAR DISELENIDES

Using the reagents **1** or **2** (1.1 equiv) we previously reported the synthesis of sugar disulfides [3c] and sugar diselenides, respectively [2b] (Scheme 2).

Scheme 2

1,6-EPITHIO AND 1,6-EPISELENO-β-D-GLUCOPYRANOSES

Thioglycosides have become increasingly important as glycosyl donors in the synthesis of oligosaccharides [12]. In particular, the 1,6-epithio derivative **8a** and 1,6-episeleno- β -D-glucopyranose **8b** are important building blocks in the synthesis of a variety of deoxy sugars since the two most reactive centers at C-1 and C-6 are bridged and provide an opportunity for further synthetic manipulation. Akagi reported the first synthesis of thiolevoglucosan **8a** in moderate yields [13], and subsequently similar approaches to **8a** have been published [14]. More recently, a series of papers has been published on the efficient synthesis and use of 1,6-dideoxy-1,6-epithio and 1,6-dideoxy-1,6-episeleno sugars as glycosyl donors for the preparation of 6-deoxy sugars [15]. Our reagent tetrathiomolybdate **1** was used successfully for the first time by Stick for the synthesis of thiolevoglucosan **8a** [15a], and we decided to expand and explore the versatility of reagent **1** in the synthesis of a variety of levoglucosan derivatives (Scheme 3). It was also of interest to study the use of tetraselenotungstate **2** for the synthesis of selenolevoglucosan derivatives (Fig. 1).

Fig. 1

Synthesis of 1,6-epithio and 1,6-episeleno sugar deravatives

Treatment of 6-*O*-tosyl-1,2,3,4-tetra-*O*-acetyl- α -D-glucopyranoside **4** with HBr in acetic acid gave the corresponding glycosyl bromide **5**. The glycosyl bromide **5** was directly treated with tetrathiomolyb-date **1** (1.2 equiv, CH₃CN, 28 °C, 0.5 h) to afford 2,3,4-tri-*O*-acetylthiolevoglucosan **8a** in 95 % yield. Similarly, the reaction of **5** with tetraselenotungstate **2** (1.2 equiv, CH₃CN, 28 °C, 0.5 h) led to the formation of 2,3,4-tri-*O*-acetylselenolevoglucosan **8b** in 94 % yield. The facile formation of 1,6-anhydrosugars **8a** and **8b** from **5** can be visualized to take place via sulfur transfer or selenium transfer at the anomeric carbon to form intermediate disulfide/diselenide **6a/6b**. The formation of sugar disulfide/diselenide from pyranosyl bromides with **1** or **2** has already been demonstrated in our laboratory [2b,3c]. The intermediate **6** possibly undergoes reductive cleavage to give the corresponding thiolate **7a** or selenoate **7b** involving an induced redox process [5] followed by displacement of the tosylate (Scheme 3).

Encouraged by these results, we applied this methodology to different carbohydrate derivatives. Treatment of 2-deoxy-1,3,4-tri-O-acetyl-6-O-tosyl- α -D-glucopyranoside 9 [16] with HBr/acetic acid followed by the reaction with 1 gave 2-deoxy-3,4-di-O-acetythiolevoglucosan 10 [17] and on reaction with 2 afforded 2-deoxy-3,4-di-O-acetyselenolevoglucosan 11 in excellent yields. Compounds 10 and 11 can serve as excellent precursors toward the synthesis of natural products containing 2,6-dideoxy carbohydrate moieties. These can also be directly used as glycosyl donors as the anomeric position has been activated with sulfur/selenium.

The methodology was also extended to a galactose derivative. Treatment of 6-O-tosyl-1,2,3,4-tetra-O-acetylgalactose **12** [15a] with HBr/acetic acid gave the corresponding galactose bromide, which

© 2005 IUPAC, Pure and Applied Chemistry 77, 145–153

upon treatment with 1 gave the corresponding 1,6-epithio derivative 13 [15a] (95 %) and on treatment with 2 yielded 1,6-episeleno- β -D-galactopyranose 14 (94 %) (Scheme 4).

Synthesis of 2-deoxy-2-amino-1,6-epithio and 1,6-episeleno sugar derivatives

Deoxy amino sugars are also of synthetic interest because of their increased therapeutic capabilities. In 1975, Yamamoto et al. [18] reported the synthesis of 2-acetamido-3,4-di-O-aetyl-2-deoxy-thiolevoglucosan 18 starting from 2-acetamido-3,4-di-O-acetyl-2-deoxy-6-O-p-toluenesulfonyl-β-D-glucopyranosyl ethylxanthate. After this report, no other synthetic procedures were published for the synthesis of amino-thiolevoglucosans. Our attempt toward the synthesis of 2-acetamido-3,4-di-O-aetyl-2-deoxy-thiolevoglucosan 18 started from the glucosamine hydrochloride 15. Neutralization of glucosamine hydrochloride 15 with NaOMe/MeOH followed by treatment with Ac₂O gave the corresponding N-acetylglucosamine 16 [19] in 90 % yield. Tosylation of 16 followed by acetylation furnished 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-6-O-p-toluenesulfonyl-β-D-glucopyranose 17 [20] in moderate yield (50 %). Treatment of 17 with HBr/AcOH followed by treatment with MoS_4^{2-} (1) or WSe₄²⁻ (2) furnished 2-acetamido-3,4-di-O-aetyl-2-deoxy-thiolevoglucosan 18 or 2-acetamido-3,4-di-O-aetyl-2-deoxy-selenolevoglucosan 19, respectively, in excellent yield (95 and 75 %) (Scheme 5). On the other hand, treatment of glucosamine hydrochloride 15 with *p*-toluene sulfonylchloride in pyridine followed by acetylation gave the corresponding di-tosyl glucosamine derivative 20 in good yield (60 %). Compound 20 upon treatment with HBr in acetic acid followed by reaction with 1 afforded 2-deoxy-2-tosylamino-3,4-di-O-acetyl-1,6-epithioglucose 21 (87 %) and on treatment with 2 gave 2-deoxy-2-tosylamino-3,4-di-O-acetyl-1,6-episelenoglucose 22 (85 %) (Scheme 5).

Synthesis of 2-deoxy-3-halo-1,6-epithio and 1,6-episeleno sugar derivatives

2,3,6-Trideoxy systems are present as terminal sugars in natural products like aclacinomycin and act as intermediates in the synthesis of antibiotic amicetin [21]. In order to achieve the synthetic precursor for this class of molecules, we have chosen 3,4,6-tri-*O*-acetyl-D-glucal **23** [22] as a starting material. Deprotection of the acetates from **23** using NaOMe/MeOH gave glucal **24** in 99 % yield, which was selectively tosylated at C-6 hydroxyl and then acetylated the C-3 and C-4 hydroxyls using pyridine and acetic anhydride to furnish 6-*O*-tosyl-3,4-di-*O*-acetyl-D-glucal **25** [23] in 76 % yield. Compound **25** was treated with HBr/acetic acid to get the dibromide **26** [16], which on treatment with tetrathiomolybdate **1** gave 2,3-dideoxy-3-bromo-4-*O*-acetyl-1,6-epithioglucopyranose **27** and on reaction with tetraselenotungstate **2** afforded 2,3-dideoxy-3-bromo-4-*O*-acetyl-1,6-episelenoglucopyranose **28**, respectively, in very good yields (82 %) (Scheme 6).

Synthesis of 1,5-epithio and 1,5-episleno-D-ribose derivatives

It was of interest to extend the scope of this reaction to the synthesis of 1,5-epithio/episeleno pentose derivatives. Accordingly, treatment of D-ribose **29** in acetone with cat. H_2SO_4 gave the selectively protected 2,3-isopropylidine-D-ribose **30** [24] in 85 % yield.

Reaction of **30** with *p*-TsCl/pyridine furnished 5-*O*-tosyl-2,3-isopropylidine-D-ribose **31** [25] in 80 % yield. Treatment of 5-*O*-tosyl-2,3-isopropylidine-D-ribose **31** with SOCl₂ in dichloromethane gave the corresponding ribosyl chloride which was immediately treated with **1** to give the corresponding 1,5-epithio-2,3-isopropylidine-D-ribose **32** [26], and treatment of **31** with **2** afforded 1,5-episeleno-2,3-isopropylidine-D-ribose **33** in very good yields (Scheme 7).

In studies directed toward the synthesis of 2,5-dideoxy ribose derivatives, 2-deoxyribose **34** was treated with cat. HCl in methanol to get the methyl-2-deoxy-ribofuranoside **35** [27] in 90 % yield. Compound **35** was treated with *p*-TsCl in pyridine to furnish methyl 2-deoxy-3,5-di-*O*-tosyl-D-*erythro*-pentoside **36** [28]. Treatment of **36** with dry HCl in glacial acetic acid gave the corresponding 2-deoxy-3,5-di-*O*-tosyl-D-*erythro*-pentosyl chloride derivative, which upon treatment with **1** gave 2-deoxy-1,5-ep-ithio-3-*O*-tosyl-ribose **37** (65 %) and on reaction with **2** afforded 2-deoxy-1,5-episeleno-3-*O*-tosyl-ribose **38** (61 %) (Scheme 8).

It is important to mention that these 1,5-epithio or 1,5-episelenopentoses (**32**, **33**, **37**, and **38**) are excellent precursors for the synthesis of deoxynucleotides as well as for the synthesis of 2,3-dideoxy-3-thiocytidine (3TC), [(+)-(2S,5R)-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine] (+)-BCH-189 which are potent anti-human immunodeficiency virus (HIV) active [29] and anti-human hepatitis B virus active [30].

CONCLUSION

In conclusion, we have developed an efficient methodology for the synthesis of epithio and episeleno hexoses and pentoses in good to excellent yields utilizing tetrathiomolybdate **1** and tetraselenotungstate **2** as key reagents for effecting the desired transformation. These derivatives are excellent precursors for the preparation of 6-deoxy, 1,6-dideoxy, 2,6-dideoxy, and 2,3,6-trideoxy hexoses as well as for 5-deoxy and 2,5-dideoxy pentose derivatives.

ACKNOWLEDGMENTS

The authors thank the Volkswagen Foundation, Germany for financial support of this investigation. P.R.S. thanks the Council of Scientific and Industrial Research, New Delhi for a senior research fellowship.

REFERENCES AND NOTES

- 1. Review: K. R. Prabhu, N. Devan, S. Chandrasekaran. Synlett 1762-1778 (2002).
- (a) S. O'Neil and J. W. Kolis. J. Am. Chem. Soc. 110, 1971–1973 (1988); (b) V. Saravanan, E. Porhiel, S. Chandrasekaran. Tetrahedron Lett. 44, 2257–2260 (2003).
- (a) A. R. Remesha and S. Chandrasekaran. Synth. Commun. 22, 3277–3284 (1992); (b) A. R. Ramesha and S. Chandrasekaran. J. Org. Chem. 59, 1354–1357 (1994); (c) D. Bhar and S. Chandrasekaran. Carbohydr. Res. 301, 221–224 (1997).
- N. Devan, P. Ramu Sridhar, K. R. Prabhu, S. Chandrasekaran. J. Org. Chem. 67, 9417–9420 (2002).
- K. R. Prabhu, P. S. Sivanand, S. Chandrasekaran. Angew. Chem., Int. Ed. Eng. 31, 4316–4319 (2000).
- 6. A. R. Ramesha, S. Bhat, S. Chandrasekaran. J. Org. Chem. 60, 7682–7683 (1995).
- (a) S. Sinha, S. Ilankumaran, S. Chandrasekaran. *Tetrahedron Lett.* 40, 771–774 (1999); (b) R. G. Bhat, S. Sinha, S. Chandrasekaran. *Chem. Commun.* 8, 812–813 (2002).
- 8. P. Ramu Sridhar and S. Chandrasekaran. Org. Lett. 4, 4731–4733 (2002).
- 9. P. Ramu Sridhar, K. R. Prabhu, S. Chandrasekaran. J. Org. Chem. 68, 5261-5264 (2003).
- 10. M. V. Rao and K. Macfarlane. Tetrahedron Lett. 35, 6741-6744 (1994).
- 11. R. G. Bhat, E. Porhiel, V. Saravanan, S. Chandrasekaran. *Tetrahedron Lett.* 44, 5251–5254 (2003).
- 12. P. J. Garegg. Adv. Carbohydr. Chem. Biochem. 52, 179-205 (1997).
- 13. M. Akagi, S. Tejima, M. Haga. Chem. Pharm. Bull. 11, 53-58 (1963).
- 14. (a) R. L. Whistler and P. A. Seib. *Carbohydr. Res.* **2**, 93–103 (1966); (b) I. Lundt and B. Skelbæk-Pedersen. *Acta Chem. Scand., Ser. B* **35**, 637–642 (1981).
- (a) H. Driquez, J. C. McAuliffe, R. V. Stick, D. M. G. Tilbrook, S. J. Williams. *Aust. J. Chem.* 49, 343–348 (1996); (b) R. V. Stick, D. M. G. Tilbrook, S. J. Williams. *Aust. J. Chem.* 52, 685–693 (1999); (c) B. W. Skelton, R. V. Stick, D. M. G. Tilbrook, A. H. White, S. J. Williams. *Aust. J. Chem.* 53, 389–397 (2000).
- (a) V. Bailliez, R. M. de Figueiredo, A. Olesker, J. Cleophax. *Synthesis* 1015–1017 (2003); (b)
 M. V. Rosenthal and R. A. Zingaro. *Carbohydr. Res.* 84, 341–349 (1980).
- 17. T. Maki and S. Tejima. Chem. Pharm. Bull. 15, 1367–1372 (1967).
- 18. K. Yamamoto, M. Haga, S. Tejima. Chem. Pharm. Bull. 23, 233-236 (1975).
- 19. D. Haarton. Org. Synth. 46, 1-5 (1966).
- 20. J. Kadokawa, M. Sato, M. Karasu, H. Tagaya, K. Chiba. *Angew. Chem., Int. Ed.* **37**, 2373–2376 (1998).
- 21. E. L. Albano and D. Horton. J. Org. Chem. 34, 3519-3522 (1969).
- 22. Z. J. Witczak, H. Chen, P. Kafplon. Tetrahedron: Asymmetry 11, 519-532 (2000).
- 23. P. Jargilis and F. W. Lichtenthaler. Tetrahedron Lett. 23, 3781–3784 (1982).
- 24. M. P. Sibi, J. Lu, J. Edwards. J. Org. Chem. 62, 5864-5872 (1997).
- 25. D. H. R. Barton, J. Camara, X. Cheng, S. D. Gero, J. Cs. Jaszberenyi, B. Quiclet-Sire. *Tetrahedron* 48, 9261–9276 (1992).
- 26. A. Fleetwood and N. A. Hughes. Carbohydr. Res. 317, 204–209 (1999).
- 27. M. S. Motawia and E. B. Pedersen. Liebigs Ann. Chem. 599-602 (1990).
- 28. E. Bozo, S. Boros, J. Kuszmann. Carbohydr. Res. 321, 52–66 (1999).

- (a) R. F. Schinazi, C. K. Chu, A. Peck, A. McMillan, R. Mathis, D. Cannon, L.-S. Jeong, J. W. Beach, W.-B. Choi, S. Yeola, D. C. Liotta. *Antimicrob. Agents Chemother.* 36, 672–676 (1992);
 (b) K. C. Chung, J. W. Beach, L. S. Jeong, B. G. Choi, F. I. Comer, A. J. Alves, R. F. Schinazi. J. Org. Chem. 56, 6503–6505 (1991).
- (a) S.-L. Doong, C.-H. Tsai, R. F. Schinazi, D. C. Liotta, Y.-C. Chen. *Proc. Natl. Acad. Sci. USA* 88, 8495–8499 (1991); (b) J. W. Beach, L. S. Jeong, A. J. Alves, D. Pohl, H. O. Kim, C.-N. Chang, S.-L. Doong, R. F. Schinazi, Y.-C. Cheng, C. K. Chu. *J. Org. Chem.* 57, 2217–2219 (1992).