

BIPM and CCQM activities under the Metre Convention

Metrological tools to underpin analytical measurements

Robert Wielgosz

BIPM, Head of Chemistry Section

Outline

- BIPM: Role as an Intergovernmental Organization
- CIPM MRA: International Metrology Infrastructure
 - National Metrology Institutes (NIST, LGC, NMIA...)
 - Metrology in Chemistry (CCQM)
 - Key Comparisons (Pilot studies)
 - Degrees of equivalence
 - Calibration and Measurement Capabilities (CMCs)
- Related activities:
 - IFCC and ILAC: JCTLM (Laboratory Medicine)
 - Codex Alimentarius (Food Analysis)

Bureau International des Poids et Mesures (BIPM)

International Bureau of Weights and Measures

The task of the BIPM is to ensure world-wide uniformity of measurements and their traceability to the International System of Units (SI).

BIPM's Mission

"THE GOAL OF THE BIPM IS WORLDWIDE UNFORMITY OF MEASUREMENT."

"It achieves this through providing the necessary scientific and technical basis for such uniformity and by collaborating with other institutions and organisations that have related missions."

General Conference on Weights and Measures, 2003.

METRE CONVENTION

- An intergovernmental treaty which, inter alia, established the BIPM
- Affirmed international support for the International System of Units- the SI
- Created the General Conference of Weights and Measures which meets every 4 years and is responsible for all major decisions affecting the SI, the BIPM and links with other intergovernmental bodies etc
- 51 full Member States
- 20 Associates of the General Conference of Weights and Measures

BUREAU INTERNATIONAL DES POIDS ET MESURES TODAY

- On international territory at Sèvres with some 70 staff.
- €10M pa budget funded by 51 Member States and 20 Associates of the General Conference of the Metre Convention.
- Co-ordinates world metrology and maintains an up to date SI system to meet the needs of science and commerce.
- <u>Compares national standards and coordinates international</u> <u>comparisons to ensure international equivalence and</u> <u>acceptability of measurement especially to meet regulatory and</u> <u>trade needs.</u>
- Presses for SI traceability and consistency world-wide wherever measurements are made new activities focus on areas outside traditional physics and engineering such as chemistry, medicine, food, the environment.....

THE INTERNATIONAL MEASUREMENT SYSTEM

National Metrology Institutes (NMIs)

Services provided by NMIs for analytical laboratories include:

- Certified Reference Materials (CRMs)
 - Pure substance calibrators
 - Calibration solutions
 - Matrix reference materials
 - as calibrators
 - for method validation
- Reference measurement services
- Calibrations

International Metrology

- CCAUV: Consultative Committee for Acoustics, Ultrasound and Vibration.
- CCEM: Consultative Committee for Electricity and Magnetism.
- CCL: Consultative Committee for Length
- CCM: Consultative Committee for Mass and Related Quantities
- CCPR: Consultative Committee for Photometry and Radiometry
- CCOM: Consultative Committee for Amount of Substance Metrology in Chemistry
- CCRI: Consultative Committee for Ionizing Radiation
- CCT: Consultative Committee for Thermometry
- CCTF: Consultative Committee for Time and Frequency
- CCU: Consultative Committee for Units
- Contact the Executive Secretary of a CC
- Directory of Consultative Committees
- Criteria for membership of a Consultative Committee

Current CCQM Measurement Service Category Numbers and Categories

- **High Purity Chemicals** 1
- Inorganic Compounds 1.1
- 1.2 **Organic Compounds**
- 1.3 Metals
- 1.4 Isotopics
- 1.5 Other

Inorganic Solutions 2

- 2.1 Elemental
- 2.2 Anionic
- 2.3 Other

3 **Organic Solutions**

- 3.1 PAHs
- PCBs 3.2
- 3.3 Pesticides
- 3.4 Other

Gases 4

- **High Purity** 4.1
- Environmental 4.2
- 4.3 Fuel
- 4.4 Forensic
- 4.5 Medical
- 4.6 Other

5 Water

- 5.1 Fresh Water
- 5.2 Contaminated Water
- 5.3 Sea Water
- 5.4 Other

- 6 pН 7 **Electrolytic Conductivity** 8 **Metals and Metal Alloys**
- 8.1 Ferrous Metals
- 8.2 Non-Ferrous Metals
- 8.3 Precious Metals
- 8.4 Other

9 **Advanced Materials**

- 9.1 Semiconductors
- 9.2 Superconductors
- 9.3 **Polymers and Plastics**
- 9.4 Ceramics
- 9.5 Other

10 **Biological Fluids and Materials**

- 10.1 Blood, Plasma, Serum
- 10.2 Urine Fluids
- 10.3 Hair
- 10.4 Tissues
- 10.5 Bone
- 10.6 Botanical Materials
- 10.7 Other

Food 11

- Nutritional Constituents 11.1
- 11.2 Contaminants
- 11.3 GMOs
- 11.4 Other

12 **Fuels**

- 12.1 Coal and Coke
- 12.2 Petroleum Products
- 12.3 **Bio-mass**
- 12.4 Other

13 Sediments. Soils. Ores. and Particulates

- 13.1 **Sediments**
- Soils 13.2
- 13.3 Ores
- 13.4 Particulates
- 13.5 Other

Other Materials 14

- 14.1 Cements
- 14.2 Paints
- 14.3 **Textiles**
- 14.4 Glasses
- Thin Films 14.5
- 14.6 Coatings
- **Insulating Materials** 14.7
- 14.8 Rubber
- 14.9 Adhesives
- 14.10 Other

15 **Optical Properties**

"HOW DO NATIONAL METROLOGY INSTITUTES CONVINCE US THAT THEY ARE AS GOOD AS THEY SAY THEY ARE?"

Reconnaissance mutuelle

des étalons nationaux de mesure et des certificats d'étalonnage et de mesurage émis par les laboratoires nationaux de métrologie

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures

Bureau international des poids et mesures Organisation intergouvernementale de la Convention du Mètre In 1999 the CIPM developed an MRA between NMIs to address technical barriers to trade caused by lack of traceability and equivalence.

Complying with the MRA means that an NMI's calibration certificates are acceptable world-wide with a validated accuracy.

CIPM-MRA

Technical basis for:

-Determination of the degree of equivalence of measurement standards

-Mutual recognition of calibration and measurement certificates

े ERM

Uncertainty

maka

0.13

0.007

0.13

0.23 0.04

0.10

ISO/IEC 17025: General requirements for the competence of testing and calibration laboratories

Measurement Standards and Certified Reference Materials

Measurement traceability

Measurement uncertainty

Method Validation

Comparability of measurements

BIPM

traceability

Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.

uncertainty of measurement

parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

TO MEET THE REQUIREMENTS OF THE MRA, AN NMI WILL NEED:

- To have its calibration and measurement capabilities (CMCs) validated by others based on objective evidence.
- To take part in key comparisons that give technical confidence in the day-to day measurements at the NMIs worldwide
- To implement a quality/management system essentially ISO/IEC 17025 (and ISO Guide 34 for CRMs)

Regional Metrology Organizations

BIPM Bureau International des Poids et	Mesures
APPENDIX A	APPENDIX B APPENDIX C APPENDIX D
KCDB home	
The BIPM key compar	son database 🛛 🕻 🕵 🕅 🕄 🕄 🕵 🕅
ک _{KCDB} • <u>KCDB home</u>	in support of the Mutual Recognition Arrangement (MRA) of national measurement standards and of calibration and measurement certificates issued by national metrology institutes
• <u>KCDB news</u> • <u>MRA</u> • <u>JCRB</u>	The BIPM key comparison database is defined in the text of the <u>MRA</u> as "the database maintained by the BIPM (Bureau International des Poids et Mesures) which contains Appendices A, B, C and D of the Mutual Recognition Arrangement".
• <u>Guidelines for Key</u> comparisons	Appendix A: MRA signatories 🛛 🔂
<u>Momenciature</u> <u>Metrologia</u> (Version francosico)	List of national metrology institutes that are signatories to the arrangement.
 What's new ? 16 February 2004 <u>Appendix C: Mass and</u> <u>Related Quantities (Fluid Flow)</u> 	Appendix B: Key and supplementary comparisons Information on CIPM (Comité International des Poids et Mesures) and RMO (Regional Metrology Organization) key and supplementary comparisons, together with results when they become available.
 16 February 2004 <u>Appendix B: Key comparison</u> <u>CCTF-K2001.UTC</u> 	Appendix C: Calibration and Measurement Capabilities (CMCs) Quantities for which calibration and measurements certificates are recognized by institutes
N Contract up	participating in part two of the arrangement.
Contact us BIPM.KCDB@bipm.org	Appendix D: List of key comparisons
	The KCDB website is best viewed using version 7.0 of <u>Netscape</u> or version 5.0 or higher of
 KCDB Newsletter Subscribe 	<u>AL</u> ,

Metrology in Chemistry, CCQM

CCQM Working Groups

Key Comparisons and CMC Quality	NMIA
Organic Analysis	NIST
Inorganic Analysis	LGC
Gas Analysis	NMi
Electro-chemical Analysis	SMU
Surface Analysis	BAM
Bio-Analysis	LGC

CCQM Key Comparison Areas:

Health

• clinical diagnostic markers (cholesterol/heart disease, diabetes/glucose, creatinine/kidney function, trace hormones)

- electrolytes (Na, K, Ca)
- Pb in blood
- anabolic steroids in urine

Food

- pesticide residues
- antibiotics in meat
- growth hormones in meat
- vitamins and minerals
- drinking water (EPA List)

Environment

- air (EPA HAPs List)
- soil/sediments
- biological tissues
- waste water (EPA List)

General Studies

- pH
- electrolytic conductivity
- purity assessment
- calibration solutions mixtures

Advanced Materials

- semiconductors
- metal alloys
- polymers and plastics

Forensics

- drugs of abuse
- explosive residues
- breathalyzer (ethanol-in-air, ethanol in water)
- DNA profiling

Commodities

- emissions trading (SO₂ in stack emissions)
- sulfur in fossil fuels
- natural gas
- sucrose
- ethanol in wine
- cement (Ca, Si, Al, S, Ti, Na, Mg)
- source of origin/adulteration

Biotechnology

- DNA Quantitation
- GMO

CCQM Organic Analytical Working Group (OAWG) Activities and Accomplishments:

Increasingly: Key comparison plans driven by customer needs for traceability/recognition of measurement capabilities

QM Comparison Title **Study Period Cholesterol in serum** CCQM-P6 1998-1999 CCOM-K6 Cholesterol in human serum 1999-2000 CCQM-K6-subsequent **Cholesterol in human serum - subsequent** 2000-2001 CCQM-P8 **Glucose in Serum** 1999-2000 CCQM-K11 **Glucose in Human Serum** 2000 CCQM-P9 **Creatinine in Serum** 1999-2000 CCQM-K12 **Creatinine in Human Serum** 2000

Health Sector

Food / Environment

QM Comparison	Title	Study Period
CCQM-P2	p,p'-DDE in isooctane	1997-1998
CCQM-P4	p,p'-DDE in corn oil	1998-1999
CCQM-K5	pp'-DDE in fish oil	1999-2000
CCQM-P10	gamma-HCH in Fish Oil	1999
CCQM-P10.2	gamma-HCH in Fish Oil	2000
CCQM-P21	p,p'-DDT in Fish Oil	1999-2000
CCQM-K21	p,p' DDT in fish oil	2000-2001
CCQM-P40	Organic Contaminants in Tissue (PCB Congeners, PAHs, Chlorinated Pesticides)	2003-4
CCQM-P57	PCB Congeners in Mussel Tissue Extract	2005
CCQM-P67	PCB Congeners in Mussel Tissue	2005

Environmental

QM Comparison	Title	Study Period
CCQM-P17	PCBs in Sediment	2000
CCQM-K25	PCBs in Sediment	2001
CCQM-P18 (with AWG)	Tributyl tin in Sediment	2001-2002

Forensics / Commodities

Customer Sector	QM Comparison	Title	Study Period
Forensics / Commodities	CCQM-P35	Ethanol in Aqueous Matrix	2001
Commodities	CCQM-27b	Ethanol in aqueous matrix, commodity level	2002
Forensics	CCQM-K27a	Ethanol in aqueous matrix, forensic levels	2002
Forensics / Commodities	CCQM-K27 subsequent	Ethanol in Aqueous Matrix	2003- 2004
Forensics	CCQM-P27	LSD in Human Urine	2001

General analytical applications

QM Comparison	Title	Study Period
CCQM-P3	NMR study	1998-1999
CCQM-P3.2	NMR study	1999-2000
CCQM-P5	Organic Purity Assessment Series: Acetanilide, benzoic acid, and naphthalene	1998
CCQM-P20a	Organic Purity Assessment Series: Tributyl tin	2001-2002
CCQM-P20b	Organic Purity Assessment Series: O-xylene	2002
CCQM-P20c	Organic Purity Assessment Series: Atrazine (2 levels)	2003-2004
CCQM-P20d	Organic Purity Assessment Series: Chlorpyrifos (Organophosphate pesticide)	2003-2004
CCQM-P31.a	Organic Solutions: PAH Solution	2004
CCQM-P31.b	Organic Solutions: PCB Congener Solution	2004
CCQM-P31.c	Organic Solutions: Chlorinated Pesticide Solution	2004
CCQM-K40 CCQM-P31.a.1	Organic Solutions: PCB Congener Solution	2005
CCQM-P61	Organic Solutions: Volatile Organic Compounds (VOCs) in Organic Solvent	2005

CCQM BIOANALYSIS WG: Towards An International Biometrology Infrastructure

Reference No. Description		Coordinating Laboratory
CCQM-P44	DNA Quantification	NIST/LGC
CCQM-P44.1	Q-PCR (repeat)	NIST/LGC
CCQM-P53	AFLP DNA Profiling	NARL
CCQM-P54	DNA primary quantification	LGC
CCQM-P54.1	DNA quantification	LGC
CCQM-P55	Peptide / protein quantification	LGC
CCQM-P58	Fluorescence in ELISA	NPL/NIST
CCQM-P59	Protein structural measurements by CD	NPL/NIST
CCQM-P60	DNA extraction - reference method	IRMM
CCQM-P94	Quantification of DNA methylation	KRISS

Key Comparisons: International Comparisons – formal part of the CIPM-MRA (restricted participation)

Pilot studies: International Comparisons – expert laboratories can be invited to participate

1996-2007: 63 Key comparisons; 100 Pilot studies

Examples:

- CCQM-K27: Ethanol in water (0.8 mg/g)
- CCQM-K4: Ethanol in air (120 µmol/mol)
- CCQM-P12: Pb in Wine
- CCQM-P68: 19- Norandrosterone in Urine

CCQM-K27: Ethanol in water (Forensic level: Blood alcohol testing)

ID/GC/MS- based methods

Measurement equation:

$$C_{X} = C_{Z} \times \frac{M_{Y}}{M_{X}} \times \frac{M_{Ze}}{M_{Ye}} \times \frac{R_{Z} - R_{Be}}{R_{Be} - R_{Y}} \times \frac{R_{Y} - R_{B}}{R_{B} - R_{Z}}$$

where:

 C_Z = is the mass fraction of ethanol in the calibration solution in mg g⁻¹ M_Y = Mass of spike Y added to the sample X to prepare the blend B M_{Zc} = Mass of calibration solution Z added to the spike Y to make calibration blend Bc

 M_X = Mass of sample X added to the spike Y to prepare the blend B M_{YC} = Mass of spike Y added to the calibration solution Z to make calibration blend Bc

Ry = Ratio of unlabelled/labelled ion in spike solution

 R_Z = Ratio of unlabelled/labelled ion in sample/calibration solution

 R_B = Ratio of unlabelled/labelled ion in sample blend B

R_{Bc} = Ratio of unlabelled/labelled ion in calibration blend Bc

CCQM-K27: Ethanol in water (Forensic level: Blood alcohol testing)

GC-FID- based methods

Measurement equation:

$$C_{\rm X} = \frac{C_{\rm Z} \times A_{\rm S} \times f_{\rm D}}{A_{\rm C}} \tag{1}$$

where:

CZ	is the mass fraction of ethanol in the calibration solution in mg g ⁻¹ ;
As	is the area of the ethanol peak in the chromatogram of the sample;
Ac	is the area of the ethanol peak in the chromatogram of the calibration
	standard solution;
fD	is the sample dilution factor

CCQM-K27: Results

CCQM-K27.a

▶ Results						
Laboratory in measuremen	easurements Equivalence statements		Degrees of equivalence		Graph(s) of equivalence	
) : Mass fra	ction of Eth 8 mg/g	anol in a	queous mat	rix, Sam	ple A
	1000.000	o mg/ g				
x ; : result of r u : standard	measureme uncertainty	nt carried o (of x	ut by labo	oratory i		
U_j : expande	d uncertaint	ty of x , at a	95% leve	l of confide	nce	
Lab i	x_i	u_j	U_i	Da measu	ite of urement	
	7 (11979)	7 (mg/g)	7 (mg/g)		
ВАМ	0.8029	0.0025	0.004	9 Oct	2002	
KRISS	0.8013	0.0050	0.010	l Oct	2002	
LGC	0.8034	0.0004	0.000	3 Aug	2002	
BNM-LNE	0.8227	0.0070	0.014	. Oct	2002	
NARL	0.8045	0.0015	0.003	4 Sep - 0	Oct 2002	
NIST	0.8180	0.0027	0.008	7 Sep - 0	Oct 2002	
NMIJ	0.8029	0.0011	0.003) Sep - (Oct 2002	
NRCCRM	0.8048	0.0018	0.003	5 Oct	2002	
VNIIM	0.780	0.004	0.008	Oct - N	lov 2002	

Unless otherwise stated, in the final numbers presented here, rounding has been applied according to ISO-31-0 Annex B Rule B.

CCQM-K6: Uncertainty Budget

Table 9a LGC – Sample A

Parameter	Uncertainty Type	Variance	Degrees of Freedom
Isotope ratio primary standard	В	5.05E-10	Large
Isotope ratio of spike	В	1.77E-10	Large
Isotope ratio calibration blend (gravimetric value)	А	1.65E-13	Large
Isotope ratio sample blend (measured value)	А	2.11E-08	9
Isotope ratio calibration blend (measured value)	А	6.35E-08	9
Mass of sample	В	6.09E-09	Large
Mass of spike added to sample	В	9.11E-09	Large
Mass of spike added to standard	В	3.98E-09	Large
Mass of standard	В	2.66E-09	Large
Mass fraction primary standard solution	В	4.18E-08	Large
Between blend variation	А	1.32E-08	7
Combined standard uncertainty		0.0004 mg g^{-1}	
Coverage factor	2		
Combined expanded uncertainty	2	0.0008 mg g ⁻¹	
Mean value of result		0.8034 mg g^{-1}	

CCQM-K27: Degree of Equivalence

CCQM-K27.a

CCQM-K4: Ethanol in air (Breath alcohol testing)

CCQM-K4

PB Development of CRMs and Reference methods at NMIs for Forensic Analysis

- Development and validation of a primary IDMS method for analysis of THC (delta-9-Tetrahydocannabinol) in serum and urine of cannabis consumers
- Establishing traceability by reference to a well characterized THC pure substance RM
- Evaluation of the uncertainty budget
- Backround: Threshold for THC in serum to be considered an offence set to 1 ng/ml by german legislation (Dec. 2004)

PB Need for high precision:

Reduction of the risks for false positive/ false negative outcome of tests in forensic routine

© PTB: S. Lott 2007

NMI coordinated Proficiency Studies with Reference Values

Traceability of Reference Values

Linking CCQM studies and comparisons to other national and international activities

CCQM-P12 Pb in Wine

Assessing the quality of results of measurements : IMEP-16

CCQM-P68 19-Norandrosterone in Freeze Dried Human Urine

CCQM interactions with WADA

Measurand

•WADA Technical Document - TD2004 prescribes how testing laboratories should report adverse analytical findings for norandrosterone

> "only the ... quantification of 19norandrosterone and its glucuronide (calculated as the total following hydrolysis of the glucuronide)" are used to report findings

OH

•Defined measurand for CCQM-P68

 The total mass fraction of the free and glucronide forms of 19-norandrosterone, reported as equivalents of free 19-norandrosterone

National Measurement Institute, Australia

WADA statistics 2004 –

Adverse analytical findings reported by accredited laboratories

	Substance Group	Number*	% of all adverse analytical findings
S4.	Anabolic Agents	1,191	36.0%
S9.	Glucocorticosteroids	548	16.6%
S3.	Cannabinoids	518	15.7%
S1.	Stimulants	382	11.6%
S6.	Beta-2-Agonists	381	11.5%
S8.	Masking Agents	157	4.8%
S5.	Peptide Hormones	78	2.4%
P2.	Beta-blockers	25	0.8%
S2.	Narcotics	15	0.5%
S7.	Agents with Anti-oestrogenic Activity	8	0.2%
M1.	Enhancement of Oxygen Transfer	2	0.1%
	TOTAL	3,305	

* Some adverse analytical findings may correspond to multiple measurements on the same athlete, including cases of longitudinal studies on testosterone.

S4. Anabolic Agents	Occurences	% within drug class
Testosterone	392	32.9%
Nandrolone	339	28.5%
Stanozolol	226	19.0%
Methandienone	63	5.3%
Methyltestosterone	32	2.7%
Methenolone	22	1.8%
DHEA	20	1.7%
Boldenone	19	1.6%
Mesterolone	18	1.5%
Androsterone	17	1.4%
Clostebol	10	0.8%
delta1-androsten-3,17-dione	9	0.8%
Drostanolone	5	0.4%
delta-1-Testosterone	4	0.3%
Oxymetholone	4	0.3%
Androstenedione	3	0.3%
Boldione	3	0.3%
Oxandrolone	3	0.3%
Methandriol	1	0.1%
Trenbolone	1	0.1%
TOTAL*	1,191	

* Some adverse analytical findings correspond to multiple findings on the same athlete, including cases of longitudinal studies on testosterone.

JOINT COMMITTEE for TRACEABILITY in LABORATORY MEDICINE (JCTLM)

Declaration of co-operation

establishing

A framework for the international recognition of available higherorder reference materials, measurement procedures and reference measurement laboratories

".... the traceability of values assigned to calibrators and control materials must be assured through available reference measurement procedures and/or reference materials of a higher order ..."

Annex 1 (3) 2nd para

IVD Manufacturers have requested that NMIs develop internationally recognized reference methods and CRMs to meet this assist them in meeting this traceability requirement.

Sponsoring Organizations

Intergovernmental Treaty Organization for Measurement Standards

International NGO for Professionals in Laboratory Medicine

International NGO for Accreditation Bodies

Improved Cholesterol Measurement Accuracy Reduces Health Care Costs and Improves Patient Care

Data from U.S. Government Accounting Office and College of American Pathologists

What has JCTLM delivered?

A Quality assured database of:

a) Higher Order Reference Materials
b) Reference Measurement Procedures
c) Laboratory Reference Measurement Services (2007)

http://www.bipm.org/jctlm/ For use by (primarily) a) IVD industry b) Regulators

Database of higher-order reference materials and reference measurement methods/procedures

ICTLM Database

Bureau International des Poids et Mesures	Laboratory medicine and in vitro diagnostics		
> You are here : <u>JCTLM-DB home</u> > <u>Search form</u> > List of analytes by category	T+ T T.		

List of analytes by category

↘ JCTLM-DB

- JCTLM-DB home
- Search form
- Preamble for JCTLM Lists
- Reference materials no longer listed 100
- Contact us

JCTLM ע

- JCTLM
- JCTLM Working Group 1
- JCTLM Working Group 2

- You are able to view all analytes sorted by specific category for higher-order reference materials and to select an analyte.
 - → Blood gases
 - Blood groupings
 - Coagulation factors
 - Drugs
 - Electrolytes

calcium
chloride
lithium
magnesium
potassium

- Enzymes
- Metabolites and substrates
- Microbial serology
- Non-electrolyte metals
- Non-peptide hormones
- Muchaie beide

Result of the search: list of reference measurement methods/procedures

∠ JCTLM-DB

JCTLM-DB home

- Search form
- Preamble for JCTLM Lists
- Reference materials no longer listed
- Contact us

🔰 JOTLMI

JCTLM

- JCTLM Working Group 1
- JCTLM Working Group 2

Your search criteria: Reference measurement methods/procedures; Analyte: cholesterol; Analyte category: -; Matrix category: -

Save as PDF file

 \rightarrow

Modify your selection

ک Results of the search

Isotope dilution mass spectrometry method for cholesterol in blood plasma

• DGKC definitive method for serum cholesterol

Applicable matrice(s)	lyophilized, fresh, or frozen human serum or plasma
Full description of technique(s)	ID/GC/MS
Quantity	Amount-of-substance concentration
Applicable range	2 mmol/l to 10 mmol/l
Expected uncertainty (level of confidence 95%)	0.5 % to 1.5 %
Reference(s)	Siekmann et al., Z. anal. Chem., 1976, 279, 145-146
Comparability assessment study(ies)	Metrologia, 2004, 39 , Tech. Suppl., 08001
Comment(s)	The expanded uncertainty is relative
JCTLM DB identification number	NRMeth 46

Spectrophotometry method for cholesterol in blood serum

CDCAbell-Kendall method for cholesterol

Applicable matrice(s)	lyophilized, fresh, or frozen human serum
Full description of technique(s)	Spectrophotometry
Quantity	Amount-of-substance concentration
Applicable range	0.65 mmol/l to 10.3 mmol/l
Expected uncertainty (level of confidence 95%)	0.12 % to 0.66 %

Database of higher-order reference materials and reference measurement methods/procedures

Bureau International des Poids et Mesures

JCTLM Database Laboratory medicine and *in vitro* diagnostics

> You are here : <u>JCTLM-DB home</u> > <u>Search form</u> > <u>Reference materials</u> > List

Result of the search: list of higher-order reference materials

Your search criteria : Higher-order reference materials; Analyte: glucose; Analyte ↘ JCTLM-DB category: - : Matrix category: -JCTLM-DB home Save as PDF file Modify your selection Search form Preamble for JCTLM Lists 🖻 RMs no longer listed 📆 Results of the search Contact us alucose in human serum JCTLM National Institute of Standards and Technology (NIST), United States Phone: +1 301 975 6776 Email: srminfo@nist.gov JCTLM Web: http://www.nist.gov/srm Fax: +1 301 948 3730 JCTLM Working Group 1 Name of the reference material SRM 965a, glucose in frozen human serum JCTLM Working Group 2 Amount-of-substance concentration Ouantity Analyte certified/assigned value 1.918 mmol/l to 16.24 mmol/l Expanded uncertainty 0.02 mmol/l to 0.19 mmol/l (level of confidence 95%) Other relevant publication(s) Method used for certification: Biomed. Mass Spectrom., 1982, 9, 395-405 Traceability SL CRM listing List I

IFCC EQAS, Inter-laboratory comparisons for Reference Measurement Laboratories

RELA 1/2003

Total cholesterol [mg/dl]

Lab	A	p.e.u.	В	p.e.u.	method
01 🔹	230,888	3,572	166,409	3,175	ID-MS
05 🔹	234,43	5,523	168,31	4,641	ID-MS
08 🔹	229,227	4,028	165,907	2,262	ID-MS
11 💿	230,2	4,613	167,4	2,369	ID-MS
12 🔹	237,8	1,558	171,9	0,890	spectrometry (Abell-Kendall)
16 🔹	237,490	2,764	171,389	1,962	spectrometry (Abell-Kendall)
18 🔷	233,5	3,08	169,3	2,42	HPLC
19 👁	238,1	0,860	170,8	1,610	spectrometry (Abell-Kendall)
27 🔹	230,888	3,919	166,023	3,105	ID-MS

http:/www.dgkl-rfb.de:81

